L(s) = 1 | + 8.19e3i·2-s + 5.48e6i·3-s − 6.71e7·4-s − 4.49e10·6-s − 8.15e10i·7-s − 5.49e11i·8-s − 2.25e13·9-s + 1.33e13·11-s − 3.68e14i·12-s − 5.64e14i·13-s + 6.68e14·14-s + 4.50e15·16-s − 1.28e16i·17-s − 1.84e17i·18-s − 3.07e17·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.98i·3-s − 0.5·4-s − 1.40·6-s − 0.318i·7-s − 0.353i·8-s − 2.95·9-s + 0.116·11-s − 0.993i·12-s − 0.517i·13-s + 0.225·14-s + 0.250·16-s − 0.315i·17-s − 2.08i·18-s − 1.67·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(14)\) |
\(\approx\) |
\(1.431346617\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.431346617\) |
\(L(\frac{29}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 8.19e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 5.48e6iT - 7.62e12T^{2} \) |
| 7 | \( 1 + 8.15e10iT - 6.57e22T^{2} \) |
| 11 | \( 1 - 1.33e13T + 1.31e28T^{2} \) |
| 13 | \( 1 + 5.64e14iT - 1.19e30T^{2} \) |
| 17 | \( 1 + 1.28e16iT - 1.66e33T^{2} \) |
| 19 | \( 1 + 3.07e17T + 3.36e34T^{2} \) |
| 23 | \( 1 - 1.99e18iT - 5.84e36T^{2} \) |
| 29 | \( 1 - 8.80e19T + 3.05e39T^{2} \) |
| 31 | \( 1 - 2.22e20T + 1.84e40T^{2} \) |
| 37 | \( 1 + 1.61e21iT - 2.19e42T^{2} \) |
| 41 | \( 1 + 9.68e21T + 3.50e43T^{2} \) |
| 43 | \( 1 + 9.33e21iT - 1.26e44T^{2} \) |
| 47 | \( 1 - 1.20e22iT - 1.40e45T^{2} \) |
| 53 | \( 1 - 8.75e21iT - 3.59e46T^{2} \) |
| 59 | \( 1 + 3.03e23T + 6.50e47T^{2} \) |
| 61 | \( 1 - 1.15e24T + 1.59e48T^{2} \) |
| 67 | \( 1 + 1.86e24iT - 2.01e49T^{2} \) |
| 71 | \( 1 + 8.93e24T + 9.63e49T^{2} \) |
| 73 | \( 1 - 2.18e25iT - 2.04e50T^{2} \) |
| 79 | \( 1 + 1.05e25T + 1.72e51T^{2} \) |
| 83 | \( 1 + 2.25e25iT - 6.53e51T^{2} \) |
| 89 | \( 1 - 1.78e26T + 4.30e52T^{2} \) |
| 97 | \( 1 - 8.87e26iT - 4.39e53T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60218380176521455591236808650, −10.06538293571587494764278245767, −8.924367600055644875522832160643, −8.192648595310860244475928608454, −6.47794570480739075444679766759, −5.40158134819989508968392064734, −4.53404753323030807465923418951, −3.78511207564267139353912027633, −2.67550122561210648813326303077, −0.51720399986407248519638729842,
0.47016631638348800598066543150, 1.38675870211078980221414592935, 2.21324781918057666124416571049, 2.96103703145723988502440073305, 4.65121671499035767810438110000, 6.19567485907404402109159007370, 6.72903488593664130350733688201, 8.259069812383715568312615536767, 8.636124076136965340608240468523, 10.42375274912640410577254335383