Properties

Label 2-504-56.53-c1-0-18
Degree 22
Conductor 504504
Sign 0.316+0.948i0.316 + 0.948i
Analytic cond. 4.024464.02446
Root an. cond. 2.006102.00610
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.867 + 1.11i)2-s + (−0.496 − 1.93i)4-s + (−2.93 + 1.69i)5-s + (−1.85 + 1.88i)7-s + (2.59 + 1.12i)8-s + (0.652 − 4.74i)10-s + (0.0932 + 0.0538i)11-s − 1.50i·13-s + (−0.504 − 3.70i)14-s + (−3.50 + 1.92i)16-s + (0.214 − 0.372i)17-s + (4.32 − 2.49i)19-s + (4.73 + 4.84i)20-s + (−0.141 + 0.0575i)22-s + (−4.56 − 7.90i)23-s + ⋯
L(s)  = 1  + (−0.613 + 0.789i)2-s + (−0.248 − 0.968i)4-s + (−1.31 + 0.757i)5-s + (−0.700 + 0.713i)7-s + (0.917 + 0.398i)8-s + (0.206 − 1.50i)10-s + (0.0281 + 0.0162i)11-s − 0.416i·13-s + (−0.134 − 0.990i)14-s + (−0.876 + 0.480i)16-s + (0.0520 − 0.0902i)17-s + (0.992 − 0.573i)19-s + (1.05 + 1.08i)20-s + (−0.0300 + 0.0122i)22-s + (−0.951 − 1.64i)23-s + ⋯

Functional equation

Λ(s)=(504s/2ΓC(s)L(s)=((0.316+0.948i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(504s/2ΓC(s+1/2)L(s)=((0.316+0.948i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 504504    =    233272^{3} \cdot 3^{2} \cdot 7
Sign: 0.316+0.948i0.316 + 0.948i
Analytic conductor: 4.024464.02446
Root analytic conductor: 2.006102.00610
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ504(109,)\chi_{504} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 504, ( :1/2), 0.316+0.948i)(2,\ 504,\ (\ :1/2),\ 0.316 + 0.948i)

Particular Values

L(1)L(1) \approx 0.1777590.128029i0.177759 - 0.128029i
L(12)L(\frac12) \approx 0.1777590.128029i0.177759 - 0.128029i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8671.11i)T 1 + (0.867 - 1.11i)T
3 1 1
7 1+(1.851.88i)T 1 + (1.85 - 1.88i)T
good5 1+(2.931.69i)T+(2.54.33i)T2 1 + (2.93 - 1.69i)T + (2.5 - 4.33i)T^{2}
11 1+(0.09320.0538i)T+(5.5+9.52i)T2 1 + (-0.0932 - 0.0538i)T + (5.5 + 9.52i)T^{2}
13 1+1.50iT13T2 1 + 1.50iT - 13T^{2}
17 1+(0.214+0.372i)T+(8.514.7i)T2 1 + (-0.214 + 0.372i)T + (-8.5 - 14.7i)T^{2}
19 1+(4.32+2.49i)T+(9.516.4i)T2 1 + (-4.32 + 2.49i)T + (9.5 - 16.4i)T^{2}
23 1+(4.56+7.90i)T+(11.5+19.9i)T2 1 + (4.56 + 7.90i)T + (-11.5 + 19.9i)T^{2}
29 1+7.95iT29T2 1 + 7.95iT - 29T^{2}
31 1+(0.3930.680i)T+(15.526.8i)T2 1 + (0.393 - 0.680i)T + (-15.5 - 26.8i)T^{2}
37 1+(7.684.43i)T+(18.532.0i)T2 1 + (7.68 - 4.43i)T + (18.5 - 32.0i)T^{2}
41 1+8.59T+41T2 1 + 8.59T + 41T^{2}
43 1+6.65iT43T2 1 + 6.65iT - 43T^{2}
47 1+(2.874.97i)T+(23.5+40.7i)T2 1 + (-2.87 - 4.97i)T + (-23.5 + 40.7i)T^{2}
53 1+(0.2860.165i)T+(26.5+45.8i)T2 1 + (-0.286 - 0.165i)T + (26.5 + 45.8i)T^{2}
59 1+(8.634.98i)T+(29.5+51.0i)T2 1 + (-8.63 - 4.98i)T + (29.5 + 51.0i)T^{2}
61 1+(1.76+1.02i)T+(30.552.8i)T2 1 + (-1.76 + 1.02i)T + (30.5 - 52.8i)T^{2}
67 1+(2.79+1.61i)T+(33.5+58.0i)T2 1 + (2.79 + 1.61i)T + (33.5 + 58.0i)T^{2}
71 18.72T+71T2 1 - 8.72T + 71T^{2}
73 1+(4.387.59i)T+(36.563.2i)T2 1 + (4.38 - 7.59i)T + (-36.5 - 63.2i)T^{2}
79 1+(0.785+1.36i)T+(39.5+68.4i)T2 1 + (0.785 + 1.36i)T + (-39.5 + 68.4i)T^{2}
83 1+1.33iT83T2 1 + 1.33iT - 83T^{2}
89 1+(3.62+6.27i)T+(44.5+77.0i)T2 1 + (3.62 + 6.27i)T + (-44.5 + 77.0i)T^{2}
97 1+19.0T+97T2 1 + 19.0T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.51566324492680142816034200784, −9.857918945755887084477007007532, −8.699818320080233207698942588278, −8.054305381440386660055374509985, −7.10174688672051445233686681092, −6.43063398577637997718309770159, −5.29550784973805049551844115047, −3.97476456861652622971427677980, −2.67208201001362048812581357466, −0.17214333770015165648542447230, 1.37339033117193819851098318986, 3.48084301078545562633091942831, 3.85604161523892774055619653539, 5.16963029138157883808859068845, 6.99632549850124128111491255106, 7.65030808024374377765706748716, 8.488465878876412805240505087492, 9.401050043079030261361676173480, 10.16175086900220401078079596281, 11.18716203618320213533854514602

Graph of the ZZ-function along the critical line