L(s) = 1 | + (−0.867 + 1.11i)2-s + (−0.496 − 1.93i)4-s + (−2.93 + 1.69i)5-s + (−1.85 + 1.88i)7-s + (2.59 + 1.12i)8-s + (0.652 − 4.74i)10-s + (0.0932 + 0.0538i)11-s − 1.50i·13-s + (−0.504 − 3.70i)14-s + (−3.50 + 1.92i)16-s + (0.214 − 0.372i)17-s + (4.32 − 2.49i)19-s + (4.73 + 4.84i)20-s + (−0.141 + 0.0575i)22-s + (−4.56 − 7.90i)23-s + ⋯ |
L(s) = 1 | + (−0.613 + 0.789i)2-s + (−0.248 − 0.968i)4-s + (−1.31 + 0.757i)5-s + (−0.700 + 0.713i)7-s + (0.917 + 0.398i)8-s + (0.206 − 1.50i)10-s + (0.0281 + 0.0162i)11-s − 0.416i·13-s + (−0.134 − 0.990i)14-s + (−0.876 + 0.480i)16-s + (0.0520 − 0.0902i)17-s + (0.992 − 0.573i)19-s + (1.05 + 1.08i)20-s + (−0.0300 + 0.0122i)22-s + (−0.951 − 1.64i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.316 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.177759 - 0.128029i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.177759 - 0.128029i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.867 - 1.11i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.85 - 1.88i)T \) |
good | 5 | \( 1 + (2.93 - 1.69i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.0932 - 0.0538i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 1.50iT - 13T^{2} \) |
| 17 | \( 1 + (-0.214 + 0.372i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.32 + 2.49i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.56 + 7.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.95iT - 29T^{2} \) |
| 31 | \( 1 + (0.393 - 0.680i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (7.68 - 4.43i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.59T + 41T^{2} \) |
| 43 | \( 1 + 6.65iT - 43T^{2} \) |
| 47 | \( 1 + (-2.87 - 4.97i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.286 - 0.165i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-8.63 - 4.98i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.76 + 1.02i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.79 + 1.61i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.72T + 71T^{2} \) |
| 73 | \( 1 + (4.38 - 7.59i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.785 + 1.36i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.33iT - 83T^{2} \) |
| 89 | \( 1 + (3.62 + 6.27i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 19.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51566324492680142816034200784, −9.857918945755887084477007007532, −8.699818320080233207698942588278, −8.054305381440386660055374509985, −7.10174688672051445233686681092, −6.43063398577637997718309770159, −5.29550784973805049551844115047, −3.97476456861652622971427677980, −2.67208201001362048812581357466, −0.17214333770015165648542447230,
1.37339033117193819851098318986, 3.48084301078545562633091942831, 3.85604161523892774055619653539, 5.16963029138157883808859068845, 6.99632549850124128111491255106, 7.65030808024374377765706748716, 8.488465878876412805240505087492, 9.401050043079030261361676173480, 10.16175086900220401078079596281, 11.18716203618320213533854514602