L(s) = 1 | + (0.5 + 0.866i)5-s + (−2.5 + 0.866i)7-s + (−2.5 + 4.33i)11-s + 2·13-s + (−3 + 5.19i)17-s + (−1 − 1.73i)19-s + (3 + 5.19i)23-s + (2 − 3.46i)25-s − 3·29-s + (−2.5 + 4.33i)31-s + (−2 − 1.73i)35-s + (1 + 1.73i)37-s + 8·41-s − 4·43-s + (−2 − 3.46i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (−0.944 + 0.327i)7-s + (−0.753 + 1.30i)11-s + 0.554·13-s + (−0.727 + 1.26i)17-s + (−0.229 − 0.397i)19-s + (0.625 + 1.08i)23-s + (0.400 − 0.692i)25-s − 0.557·29-s + (−0.449 + 0.777i)31-s + (−0.338 − 0.292i)35-s + (0.164 + 0.284i)37-s + 1.24·41-s − 0.609·43-s + (−0.291 − 0.505i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.607340 + 0.798338i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.607340 + 0.798338i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.5 - 4.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3T + 29T^{2} \) |
| 31 | \( 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 8T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (2 + 3.46i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.5 - 7.79i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 - 10.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (-7 + 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 17T + 83T^{2} \) |
| 89 | \( 1 + (9 + 15.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95634341454770104950836846532, −10.33153665707918213721554771598, −9.463200845042747180078195950763, −8.627389753104547939759017785006, −7.40941563614987038053699705727, −6.60662639000712338966927795390, −5.71777337773346049355343596544, −4.46963355997569490413701889847, −3.20927906090790748271329320923, −2.02216694401315799934367373563,
0.57935378938311712888551342100, 2.64449483988025639704890954775, 3.70610374434259922435854071636, 5.05621067840479532079886702507, 6.02071897137359704024113521651, 6.90028831221768740871836491647, 8.047871588492018681910055240308, 8.983874708821005765724252391969, 9.639249753096445109050294396276, 10.83938473008914582192044393326