L(s) = 1 | + (0.5 + 0.866i)5-s + (−2.5 + 0.866i)7-s + (−2.5 + 4.33i)11-s + 2·13-s + (−3 + 5.19i)17-s + (−1 − 1.73i)19-s + (3 + 5.19i)23-s + (2 − 3.46i)25-s − 3·29-s + (−2.5 + 4.33i)31-s + (−2 − 1.73i)35-s + (1 + 1.73i)37-s + 8·41-s − 4·43-s + (−2 − 3.46i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (−0.944 + 0.327i)7-s + (−0.753 + 1.30i)11-s + 0.554·13-s + (−0.727 + 1.26i)17-s + (−0.229 − 0.397i)19-s + (0.625 + 1.08i)23-s + (0.400 − 0.692i)25-s − 0.557·29-s + (−0.449 + 0.777i)31-s + (−0.338 − 0.292i)35-s + (0.164 + 0.284i)37-s + 1.24·41-s − 0.609·43-s + (−0.291 − 0.505i)47-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(−0.266−0.963i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(−0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
−0.266−0.963i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), −0.266−0.963i)
|
Particular Values
L(1) |
≈ |
0.607340+0.798338i |
L(21) |
≈ |
0.607340+0.798338i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.5−0.866i)T |
good | 5 | 1+(−0.5−0.866i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.5−4.33i)T+(−5.5−9.52i)T2 |
| 13 | 1−2T+13T2 |
| 17 | 1+(3−5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3−5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+3T+29T2 |
| 31 | 1+(2.5−4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1−8T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1+(2+3.46i)T+(−23.5+40.7i)T2 |
| 53 | 1+(4.5−7.79i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.5+2.59i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6−10.3i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1−1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+(−7+12.1i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.5+0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1−17T+83T2 |
| 89 | 1+(9+15.5i)T+(−44.5+77.0i)T2 |
| 97 | 1−3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95634341454770104950836846532, −10.33153665707918213721554771598, −9.463200845042747180078195950763, −8.627389753104547939759017785006, −7.40941563614987038053699705727, −6.60662639000712338966927795390, −5.71777337773346049355343596544, −4.46963355997569490413701889847, −3.20927906090790748271329320923, −2.02216694401315799934367373563,
0.57935378938311712888551342100, 2.64449483988025639704890954775, 3.70610374434259922435854071636, 5.05621067840479532079886702507, 6.02071897137359704024113521651, 6.90028831221768740871836491647, 8.047871588492018681910055240308, 8.983874708821005765724252391969, 9.639249753096445109050294396276, 10.83938473008914582192044393326