Properties

Label 2-504-63.4-c1-0-2
Degree 22
Conductor 504504
Sign 0.6150.788i0.615 - 0.788i
Analytic cond. 4.024464.02446
Root an. cond. 2.006102.00610
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.849 − 1.50i)3-s − 1.58·5-s + (−1.80 + 1.93i)7-s + (−1.55 + 2.56i)9-s + 5.17·11-s + (−0.681 + 1.18i)13-s + (1.34 + 2.38i)15-s + (−2.30 + 3.99i)17-s + (0.0321 + 0.0557i)19-s + (4.45 + 1.08i)21-s + 6.74·23-s − 2.49·25-s + (5.19 + 0.166i)27-s + (4.70 + 8.15i)29-s + (1.33 + 2.30i)31-s + ⋯
L(s)  = 1  + (−0.490 − 0.871i)3-s − 0.707·5-s + (−0.683 + 0.729i)7-s + (−0.518 + 0.855i)9-s + 1.55·11-s + (−0.189 + 0.327i)13-s + (0.347 + 0.616i)15-s + (−0.559 + 0.969i)17-s + (0.00738 + 0.0127i)19-s + (0.971 + 0.237i)21-s + 1.40·23-s − 0.499·25-s + (0.999 + 0.0320i)27-s + (0.874 + 1.51i)29-s + (0.239 + 0.414i)31-s + ⋯

Functional equation

Λ(s)=(504s/2ΓC(s)L(s)=((0.6150.788i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(504s/2ΓC(s+1/2)L(s)=((0.6150.788i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 504504    =    233272^{3} \cdot 3^{2} \cdot 7
Sign: 0.6150.788i0.615 - 0.788i
Analytic conductor: 4.024464.02446
Root analytic conductor: 2.006102.00610
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ504(193,)\chi_{504} (193, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 504, ( :1/2), 0.6150.788i)(2,\ 504,\ (\ :1/2),\ 0.615 - 0.788i)

Particular Values

L(1)L(1) \approx 0.733959+0.357997i0.733959 + 0.357997i
L(12)L(\frac12) \approx 0.733959+0.357997i0.733959 + 0.357997i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(0.849+1.50i)T 1 + (0.849 + 1.50i)T
7 1+(1.801.93i)T 1 + (1.80 - 1.93i)T
good5 1+1.58T+5T2 1 + 1.58T + 5T^{2}
11 15.17T+11T2 1 - 5.17T + 11T^{2}
13 1+(0.6811.18i)T+(6.511.2i)T2 1 + (0.681 - 1.18i)T + (-6.5 - 11.2i)T^{2}
17 1+(2.303.99i)T+(8.514.7i)T2 1 + (2.30 - 3.99i)T + (-8.5 - 14.7i)T^{2}
19 1+(0.03210.0557i)T+(9.5+16.4i)T2 1 + (-0.0321 - 0.0557i)T + (-9.5 + 16.4i)T^{2}
23 16.74T+23T2 1 - 6.74T + 23T^{2}
29 1+(4.708.15i)T+(14.5+25.1i)T2 1 + (-4.70 - 8.15i)T + (-14.5 + 25.1i)T^{2}
31 1+(1.332.30i)T+(15.5+26.8i)T2 1 + (-1.33 - 2.30i)T + (-15.5 + 26.8i)T^{2}
37 1+(0.8801.52i)T+(18.5+32.0i)T2 1 + (-0.880 - 1.52i)T + (-18.5 + 32.0i)T^{2}
41 1+(0.8581.48i)T+(20.535.5i)T2 1 + (0.858 - 1.48i)T + (-20.5 - 35.5i)T^{2}
43 1+(5.12+8.86i)T+(21.5+37.2i)T2 1 + (5.12 + 8.86i)T + (-21.5 + 37.2i)T^{2}
47 1+(2.604.51i)T+(23.540.7i)T2 1 + (2.60 - 4.51i)T + (-23.5 - 40.7i)T^{2}
53 1+(0.4790.831i)T+(26.545.8i)T2 1 + (0.479 - 0.831i)T + (-26.5 - 45.8i)T^{2}
59 1+(4.668.08i)T+(29.5+51.0i)T2 1 + (-4.66 - 8.08i)T + (-29.5 + 51.0i)T^{2}
61 1+(7.1912.4i)T+(30.552.8i)T2 1 + (7.19 - 12.4i)T + (-30.5 - 52.8i)T^{2}
67 1+(6.2410.8i)T+(33.5+58.0i)T2 1 + (-6.24 - 10.8i)T + (-33.5 + 58.0i)T^{2}
71 1+4.49T+71T2 1 + 4.49T + 71T^{2}
73 1+(0.9411.63i)T+(36.563.2i)T2 1 + (0.941 - 1.63i)T + (-36.5 - 63.2i)T^{2}
79 1+(3.265.65i)T+(39.568.4i)T2 1 + (3.26 - 5.65i)T + (-39.5 - 68.4i)T^{2}
83 1+(5.08+8.81i)T+(41.5+71.8i)T2 1 + (5.08 + 8.81i)T + (-41.5 + 71.8i)T^{2}
89 1+(4.12+7.14i)T+(44.5+77.0i)T2 1 + (4.12 + 7.14i)T + (-44.5 + 77.0i)T^{2}
97 1+(7.26+12.5i)T+(48.5+84.0i)T2 1 + (7.26 + 12.5i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.38192137025946072762885685337, −10.29943398375088834731277474253, −8.944130019025096627744392079529, −8.531090515041616292902378681605, −7.06663776422068291615322971520, −6.66718284139504054001632182899, −5.64861427986854352048461803932, −4.33551520391233702449658011331, −3.04062394653424015772146430382, −1.44892528034718364303863730861, 0.56512606423638210165611545500, 3.16942768427714371386764826414, 4.05707480017478402401439059570, 4.83469434201374006061754449397, 6.31243749467952376073227507176, 6.90549968483241425623329616303, 8.156095512811796221045969253780, 9.409293127231843209476268289330, 9.707333867463478204937192525423, 10.94038785014325519540222379330

Graph of the ZZ-function along the critical line