L(s) = 1 | + (−0.849 − 1.50i)3-s − 1.58·5-s + (−1.80 + 1.93i)7-s + (−1.55 + 2.56i)9-s + 5.17·11-s + (−0.681 + 1.18i)13-s + (1.34 + 2.38i)15-s + (−2.30 + 3.99i)17-s + (0.0321 + 0.0557i)19-s + (4.45 + 1.08i)21-s + 6.74·23-s − 2.49·25-s + (5.19 + 0.166i)27-s + (4.70 + 8.15i)29-s + (1.33 + 2.30i)31-s + ⋯ |
L(s) = 1 | + (−0.490 − 0.871i)3-s − 0.707·5-s + (−0.683 + 0.729i)7-s + (−0.518 + 0.855i)9-s + 1.55·11-s + (−0.189 + 0.327i)13-s + (0.347 + 0.616i)15-s + (−0.559 + 0.969i)17-s + (0.00738 + 0.0127i)19-s + (0.971 + 0.237i)21-s + 1.40·23-s − 0.499·25-s + (0.999 + 0.0320i)27-s + (0.874 + 1.51i)29-s + (0.239 + 0.414i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.733959 + 0.357997i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.733959 + 0.357997i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.849 + 1.50i)T \) |
| 7 | \( 1 + (1.80 - 1.93i)T \) |
good | 5 | \( 1 + 1.58T + 5T^{2} \) |
| 11 | \( 1 - 5.17T + 11T^{2} \) |
| 13 | \( 1 + (0.681 - 1.18i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.30 - 3.99i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.0321 - 0.0557i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 6.74T + 23T^{2} \) |
| 29 | \( 1 + (-4.70 - 8.15i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.33 - 2.30i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.880 - 1.52i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.858 - 1.48i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.12 + 8.86i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.60 - 4.51i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.479 - 0.831i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.66 - 8.08i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.19 - 12.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.24 - 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.49T + 71T^{2} \) |
| 73 | \( 1 + (0.941 - 1.63i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.26 - 5.65i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.08 + 8.81i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.12 + 7.14i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.26 + 12.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38192137025946072762885685337, −10.29943398375088834731277474253, −8.944130019025096627744392079529, −8.531090515041616292902378681605, −7.06663776422068291615322971520, −6.66718284139504054001632182899, −5.64861427986854352048461803932, −4.33551520391233702449658011331, −3.04062394653424015772146430382, −1.44892528034718364303863730861,
0.56512606423638210165611545500, 3.16942768427714371386764826414, 4.05707480017478402401439059570, 4.83469434201374006061754449397, 6.31243749467952376073227507176, 6.90549968483241425623329616303, 8.156095512811796221045969253780, 9.409293127231843209476268289330, 9.707333867463478204937192525423, 10.94038785014325519540222379330