L(s) = 1 | + (1.34 − 1.09i)3-s + 2.66·5-s + (1.94 + 1.79i)7-s + (0.613 − 2.93i)9-s + 1.36·11-s + (−2.75 + 4.77i)13-s + (3.58 − 2.91i)15-s + (−1.23 + 2.14i)17-s + (−2.19 − 3.80i)19-s + (4.57 + 0.286i)21-s − 4.69·23-s + 2.11·25-s + (−2.38 − 4.61i)27-s + (2.94 + 5.10i)29-s + (−1.55 − 2.69i)31-s + ⋯ |
L(s) = 1 | + (0.776 − 0.630i)3-s + 1.19·5-s + (0.735 + 0.678i)7-s + (0.204 − 0.978i)9-s + 0.411·11-s + (−0.764 + 1.32i)13-s + (0.925 − 0.752i)15-s + (−0.300 + 0.520i)17-s + (−0.503 − 0.872i)19-s + (0.998 + 0.0626i)21-s − 0.977·23-s + 0.423·25-s + (−0.458 − 0.888i)27-s + (0.547 + 0.948i)29-s + (−0.279 − 0.484i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 + 0.311i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 + 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.24491 - 0.357978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.24491 - 0.357978i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.34 + 1.09i)T \) |
| 7 | \( 1 + (-1.94 - 1.79i)T \) |
good | 5 | \( 1 - 2.66T + 5T^{2} \) |
| 11 | \( 1 - 1.36T + 11T^{2} \) |
| 13 | \( 1 + (2.75 - 4.77i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.23 - 2.14i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.19 + 3.80i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4.69T + 23T^{2} \) |
| 29 | \( 1 + (-2.94 - 5.10i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.55 + 2.69i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.15 + 5.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.38 + 2.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.87 + 8.45i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.02 + 8.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.47 - 2.56i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.77 + 3.07i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.663 - 1.14i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.14 + 7.18i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12.3T + 71T^{2} \) |
| 73 | \( 1 + (1.11 - 1.93i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 - 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.15 - 8.93i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.73 - 13.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.55 + 4.42i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86189169219777165767746513209, −9.669276966046941022905315333056, −9.053952270951411789681499316563, −8.412933034262014333977045802831, −7.12356393640237478194012699130, −6.41621224607964763127835588882, −5.33174851696915635080121793371, −4.05345465673540611656840113463, −2.27830417728386516664987463868, −1.87072224065427162314867571572,
1.73310566367429714672396927767, 2.90860496116361990194103105867, 4.27590374440593461756360694992, 5.16563262480047653374311851796, 6.24387651932524711418129934027, 7.63975082872597650649431826237, 8.239074031579735282742921773160, 9.378193844826833363830498542199, 10.14391113571537606503064241448, 10.48442793011327081403196651292