L(s) = 1 | + (−1.40 + 1.01i)3-s + 3.84·5-s + (0.676 + 2.55i)7-s + (0.953 − 2.84i)9-s + 1.80·11-s + (−0.692 − 1.19i)13-s + (−5.40 + 3.88i)15-s + (−0.833 − 1.44i)17-s + (−0.0802 + 0.138i)19-s + (−3.53 − 2.91i)21-s + 3.20·23-s + 9.75·25-s + (1.53 + 4.96i)27-s + (−3.78 + 6.54i)29-s + (−1.61 + 2.78i)31-s + ⋯ |
L(s) = 1 | + (−0.811 + 0.584i)3-s + 1.71·5-s + (0.255 + 0.966i)7-s + (0.317 − 0.948i)9-s + 0.544·11-s + (−0.192 − 0.332i)13-s + (−1.39 + 1.00i)15-s + (−0.202 − 0.350i)17-s + (−0.0184 + 0.0318i)19-s + (−0.772 − 0.635i)21-s + 0.667·23-s + 1.95·25-s + (0.295 + 0.955i)27-s + (−0.701 + 1.21i)29-s + (−0.289 + 0.500i)31-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(0.643−0.765i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(0.643−0.765i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
0.643−0.765i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), 0.643−0.765i)
|
Particular Values
L(1) |
≈ |
1.39037+0.647046i |
L(21) |
≈ |
1.39037+0.647046i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.40−1.01i)T |
| 7 | 1+(−0.676−2.55i)T |
good | 5 | 1−3.84T+5T2 |
| 11 | 1−1.80T+11T2 |
| 13 | 1+(0.692+1.19i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.833+1.44i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.0802−0.138i)T+(−9.5−16.4i)T2 |
| 23 | 1−3.20T+23T2 |
| 29 | 1+(3.78−6.54i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.61−2.78i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1.58+2.74i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−6.00−10.3i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.45+5.98i)T+(−21.5−37.2i)T2 |
| 47 | 1+(5.71+9.90i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.37−2.38i)T+(−26.5+45.8i)T2 |
| 59 | 1+(7.53−13.0i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.60−7.96i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.16+10.6i)T+(−33.5−58.0i)T2 |
| 71 | 1+6.93T+71T2 |
| 73 | 1+(6.22+10.7i)T+(−36.5+63.2i)T2 |
| 79 | 1+(8.03+13.9i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.45−2.51i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−5.04+8.73i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−4.18+7.25i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90135954527524634914616329232, −10.17546933122065857243629394986, −9.213314656216958133487151506135, −8.952066453788774060402109403781, −7.09221973557845614970021182640, −6.08837384213536255725632658061, −5.52936020995091292345988918560, −4.72793504412673048047904097407, −2.98659860882191519621250600529, −1.58962396303074821694752084904,
1.20717093618910807321623518352, 2.26476034277108504524132064076, 4.26345854055238837512642820556, 5.35462617561607626592055624742, 6.22663492472924622371332876568, 6.87050840427494049130761487756, 7.904087570184520968953435812321, 9.305356414489593547075518775236, 9.943685348718405237321151291999, 10.87275246214999305600427201191