L(s) = 1 | + (1.34 + 1.09i)3-s + 2.66·5-s + (1.94 − 1.79i)7-s + (0.613 + 2.93i)9-s + 1.36·11-s + (−2.75 − 4.77i)13-s + (3.58 + 2.91i)15-s + (−1.23 − 2.14i)17-s + (−2.19 + 3.80i)19-s + (4.57 − 0.286i)21-s − 4.69·23-s + 2.11·25-s + (−2.38 + 4.61i)27-s + (2.94 − 5.10i)29-s + (−1.55 + 2.69i)31-s + ⋯ |
L(s) = 1 | + (0.776 + 0.630i)3-s + 1.19·5-s + (0.735 − 0.678i)7-s + (0.204 + 0.978i)9-s + 0.411·11-s + (−0.764 − 1.32i)13-s + (0.925 + 0.752i)15-s + (−0.300 − 0.520i)17-s + (−0.503 + 0.872i)19-s + (0.998 − 0.0626i)21-s − 0.977·23-s + 0.423·25-s + (−0.458 + 0.888i)27-s + (0.547 − 0.948i)29-s + (−0.279 + 0.484i)31-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(0.950−0.311i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(0.950−0.311i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
0.950−0.311i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), 0.950−0.311i)
|
Particular Values
L(1) |
≈ |
2.24491+0.357978i |
L(21) |
≈ |
2.24491+0.357978i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.34−1.09i)T |
| 7 | 1+(−1.94+1.79i)T |
good | 5 | 1−2.66T+5T2 |
| 11 | 1−1.36T+11T2 |
| 13 | 1+(2.75+4.77i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.23+2.14i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.19−3.80i)T+(−9.5−16.4i)T2 |
| 23 | 1+4.69T+23T2 |
| 29 | 1+(−2.94+5.10i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.55−2.69i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.15−5.46i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.38−2.40i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.87−8.45i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−5.02−8.70i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.47+2.56i)T+(−26.5+45.8i)T2 |
| 59 | 1+(1.77−3.07i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.663+1.14i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4.14−7.18i)T+(−33.5−58.0i)T2 |
| 71 | 1−12.3T+71T2 |
| 73 | 1+(1.11+1.93i)T+(−36.5+63.2i)T2 |
| 79 | 1+(6.41+11.1i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−5.15+8.93i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−7.73+13.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+(2.55−4.42i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48442793011327081403196651292, −10.14391113571537606503064241448, −9.378193844826833363830498542199, −8.239074031579735282742921773160, −7.63975082872597650649431826237, −6.24387651932524711418129934027, −5.16563262480047653374311851796, −4.27590374440593461756360694992, −2.90860496116361990194103105867, −1.73310566367429714672396927767,
1.87072224065427162314867571572, 2.27830417728386516664987463868, 4.05345465673540611656840113463, 5.33174851696915635080121793371, 6.41621224607964763127835588882, 7.12356393640237478194012699130, 8.412933034262014333977045802831, 9.053952270951411789681499316563, 9.669276966046941022905315333056, 10.86189169219777165767746513209