L(s) = 1 | + (1.34 + 1.09i)3-s + 2.66·5-s + (1.94 − 1.79i)7-s + (0.613 + 2.93i)9-s + 1.36·11-s + (−2.75 − 4.77i)13-s + (3.58 + 2.91i)15-s + (−1.23 − 2.14i)17-s + (−2.19 + 3.80i)19-s + (4.57 − 0.286i)21-s − 4.69·23-s + 2.11·25-s + (−2.38 + 4.61i)27-s + (2.94 − 5.10i)29-s + (−1.55 + 2.69i)31-s + ⋯ |
L(s) = 1 | + (0.776 + 0.630i)3-s + 1.19·5-s + (0.735 − 0.678i)7-s + (0.204 + 0.978i)9-s + 0.411·11-s + (−0.764 − 1.32i)13-s + (0.925 + 0.752i)15-s + (−0.300 − 0.520i)17-s + (−0.503 + 0.872i)19-s + (0.998 − 0.0626i)21-s − 0.977·23-s + 0.423·25-s + (−0.458 + 0.888i)27-s + (0.547 − 0.948i)29-s + (−0.279 + 0.484i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.24491 + 0.357978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.24491 + 0.357978i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.34 - 1.09i)T \) |
| 7 | \( 1 + (-1.94 + 1.79i)T \) |
good | 5 | \( 1 - 2.66T + 5T^{2} \) |
| 11 | \( 1 - 1.36T + 11T^{2} \) |
| 13 | \( 1 + (2.75 + 4.77i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.23 + 2.14i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.19 - 3.80i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.69T + 23T^{2} \) |
| 29 | \( 1 + (-2.94 + 5.10i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.55 - 2.69i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.15 - 5.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.38 - 2.40i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.87 - 8.45i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.02 - 8.70i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.47 + 2.56i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.77 - 3.07i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.663 + 1.14i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.14 - 7.18i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.3T + 71T^{2} \) |
| 73 | \( 1 + (1.11 + 1.93i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 + 11.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.15 + 8.93i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.73 + 13.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.55 - 4.42i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48442793011327081403196651292, −10.14391113571537606503064241448, −9.378193844826833363830498542199, −8.239074031579735282742921773160, −7.63975082872597650649431826237, −6.24387651932524711418129934027, −5.16563262480047653374311851796, −4.27590374440593461756360694992, −2.90860496116361990194103105867, −1.73310566367429714672396927767,
1.87072224065427162314867571572, 2.27830417728386516664987463868, 4.05345465673540611656840113463, 5.33174851696915635080121793371, 6.41621224607964763127835588882, 7.12356393640237478194012699130, 8.412933034262014333977045802831, 9.053952270951411789681499316563, 9.669276966046941022905315333056, 10.86189169219777165767746513209