L(s) = 1 | + 2.35·2-s − 3-s + 3.55·4-s + 3.69·5-s − 2.35·6-s − 0.801·7-s + 3.66·8-s + 9-s + 8.70·10-s − 2.85·11-s − 3.55·12-s − 1.89·14-s − 3.69·15-s + 1.52·16-s + 2.93·17-s + 2.35·18-s − 2.44·19-s + 13.1·20-s + 0.801·21-s − 6.71·22-s − 7.78·23-s − 3.66·24-s + 8.63·25-s − 27-s − 2.85·28-s + 3.85·29-s − 8.70·30-s + ⋯ |
L(s) = 1 | + 1.66·2-s − 0.577·3-s + 1.77·4-s + 1.65·5-s − 0.962·6-s − 0.303·7-s + 1.29·8-s + 0.333·9-s + 2.75·10-s − 0.859·11-s − 1.02·12-s − 0.505·14-s − 0.953·15-s + 0.381·16-s + 0.712·17-s + 0.555·18-s − 0.560·19-s + 2.93·20-s + 0.174·21-s − 1.43·22-s − 1.62·23-s − 0.748·24-s + 1.72·25-s − 0.192·27-s − 0.538·28-s + 0.715·29-s − 1.58·30-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.515463422 |
L(21) |
≈ |
3.515463422 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 13 | 1 |
good | 2 | 1−2.35T+2T2 |
| 5 | 1−3.69T+5T2 |
| 7 | 1+0.801T+7T2 |
| 11 | 1+2.85T+11T2 |
| 17 | 1−2.93T+17T2 |
| 19 | 1+2.44T+19T2 |
| 23 | 1+7.78T+23T2 |
| 29 | 1−3.85T+29T2 |
| 31 | 1−2.34T+31T2 |
| 37 | 1−7.44T+37T2 |
| 41 | 1+0.850T+41T2 |
| 43 | 1+1.61T+43T2 |
| 47 | 1−2.44T+47T2 |
| 53 | 1+9.96T+53T2 |
| 59 | 1+5.38T+59T2 |
| 61 | 1+13.2T+61T2 |
| 67 | 1−14.3T+67T2 |
| 71 | 1−8.12T+71T2 |
| 73 | 1+11.8T+73T2 |
| 79 | 1−5.40T+79T2 |
| 83 | 1−7.04T+83T2 |
| 89 | 1−1.13T+89T2 |
| 97 | 1+5.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02428000056674997789312650067, −10.22851001352422597459392482860, −9.541523968179841066512171474452, −7.931350372598345093761783796969, −6.49836467154880290748927830507, −6.08007829497662988317020565119, −5.34355285688175209912160995369, −4.47555183432868305616718971206, −3.00726401005179861311751062407, −1.96556914197670966460621889314,
1.96556914197670966460621889314, 3.00726401005179861311751062407, 4.47555183432868305616718971206, 5.34355285688175209912160995369, 6.08007829497662988317020565119, 6.49836467154880290748927830507, 7.931350372598345093761783796969, 9.541523968179841066512171474452, 10.22851001352422597459392482860, 11.02428000056674997789312650067