L(s) = 1 | − 2·3-s + 4·4-s + 3·9-s − 8·12-s + 12·16-s − 12·23-s − 2·25-s − 4·27-s + 12·29-s + 12·36-s − 2·43-s − 24·48-s + 11·49-s + 24·53-s + 2·61-s + 32·64-s + 24·69-s + 4·75-s − 22·79-s + 5·81-s − 24·87-s − 48·92-s − 8·100-s − 36·101-s − 2·103-s − 12·107-s − 16·108-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 2·4-s + 9-s − 2.30·12-s + 3·16-s − 2.50·23-s − 2/5·25-s − 0.769·27-s + 2.22·29-s + 2·36-s − 0.304·43-s − 3.46·48-s + 11/7·49-s + 3.29·53-s + 0.256·61-s + 4·64-s + 2.88·69-s + 0.461·75-s − 2.47·79-s + 5/9·81-s − 2.57·87-s − 5.00·92-s − 4/5·100-s − 3.58·101-s − 0.197·103-s − 1.16·107-s − 1.53·108-s + ⋯ |
Λ(s)=(=(257049s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(257049s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
257049
= 32⋅134
|
Sign: |
1
|
Analytic conductor: |
16.3896 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 257049, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.042959419 |
L(21) |
≈ |
2.042959419 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)2 |
| 13 | | 1 |
good | 2 | C2 | (1−pT2)2 |
| 5 | C22 | 1+2T2+p2T4 |
| 7 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 37 | C2 | (1−pT2)2 |
| 41 | C22 | 1−34T2+p2T4 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1−82T2+p2T4 |
| 53 | C2 | (1−12T+pT2)2 |
| 59 | C22 | 1−106T2+p2T4 |
| 61 | C2 | (1−T+pT2)2 |
| 67 | C22 | 1−59T2+p2T4 |
| 71 | C22 | 1−34T2+p2T4 |
| 73 | C2 | (1−17T+pT2)(1+17T+pT2) |
| 79 | C2 | (1+11T+pT2)2 |
| 83 | C22 | 1+26T2+p2T4 |
| 89 | C22 | 1−130T2+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99022168541201805180365368170, −10.88459825257715122944784025758, −10.25079254161265134680590827031, −9.983196001486525948829947256632, −9.912383991182912542351654698313, −8.768005058525067394405677337667, −8.229261947696721318114790512853, −7.967477421025086437974286660438, −7.21821716447865331345990610727, −6.95468585242479492883352039003, −6.62915330582822778215013936478, −5.86167570820491382439076694934, −5.83579902619251598800908848119, −5.37784818348028851549801574913, −4.26936580159281048467713232171, −4.05798604057711294781276368355, −3.07939552385925686329295464339, −2.41577920338475777288576920701, −1.86463488811903134360907728775, −0.936485251864389765306096879002,
0.936485251864389765306096879002, 1.86463488811903134360907728775, 2.41577920338475777288576920701, 3.07939552385925686329295464339, 4.05798604057711294781276368355, 4.26936580159281048467713232171, 5.37784818348028851549801574913, 5.83579902619251598800908848119, 5.86167570820491382439076694934, 6.62915330582822778215013936478, 6.95468585242479492883352039003, 7.21821716447865331345990610727, 7.967477421025086437974286660438, 8.229261947696721318114790512853, 8.768005058525067394405677337667, 9.912383991182912542351654698313, 9.983196001486525948829947256632, 10.25079254161265134680590827031, 10.88459825257715122944784025758, 10.99022168541201805180365368170