Properties

Label 4-507e2-1.1-c1e2-0-11
Degree $4$
Conductor $257049$
Sign $1$
Analytic cond. $16.3896$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·4-s + 3·9-s − 8·12-s + 12·16-s − 12·23-s − 2·25-s − 4·27-s + 12·29-s + 12·36-s − 2·43-s − 24·48-s + 11·49-s + 24·53-s + 2·61-s + 32·64-s + 24·69-s + 4·75-s − 22·79-s + 5·81-s − 24·87-s − 48·92-s − 8·100-s − 36·101-s − 2·103-s − 12·107-s − 16·108-s + ⋯
L(s)  = 1  − 1.15·3-s + 2·4-s + 9-s − 2.30·12-s + 3·16-s − 2.50·23-s − 2/5·25-s − 0.769·27-s + 2.22·29-s + 2·36-s − 0.304·43-s − 3.46·48-s + 11/7·49-s + 3.29·53-s + 0.256·61-s + 4·64-s + 2.88·69-s + 0.461·75-s − 2.47·79-s + 5/9·81-s − 2.57·87-s − 5.00·92-s − 4/5·100-s − 3.58·101-s − 0.197·103-s − 1.16·107-s − 1.53·108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(257049\)    =    \(3^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(16.3896\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 257049,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.042959419\)
\(L(\frac12)\) \(\approx\) \(2.042959419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{2} \)
13 \( 1 \)
good2$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
37$C_2$ \( ( 1 - p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99022168541201805180365368170, −10.88459825257715122944784025758, −10.25079254161265134680590827031, −9.983196001486525948829947256632, −9.912383991182912542351654698313, −8.768005058525067394405677337667, −8.229261947696721318114790512853, −7.967477421025086437974286660438, −7.21821716447865331345990610727, −6.95468585242479492883352039003, −6.62915330582822778215013936478, −5.86167570820491382439076694934, −5.83579902619251598800908848119, −5.37784818348028851549801574913, −4.26936580159281048467713232171, −4.05798604057711294781276368355, −3.07939552385925686329295464339, −2.41577920338475777288576920701, −1.86463488811903134360907728775, −0.936485251864389765306096879002, 0.936485251864389765306096879002, 1.86463488811903134360907728775, 2.41577920338475777288576920701, 3.07939552385925686329295464339, 4.05798604057711294781276368355, 4.26936580159281048467713232171, 5.37784818348028851549801574913, 5.83579902619251598800908848119, 5.86167570820491382439076694934, 6.62915330582822778215013936478, 6.95468585242479492883352039003, 7.21821716447865331345990610727, 7.967477421025086437974286660438, 8.229261947696721318114790512853, 8.768005058525067394405677337667, 9.912383991182912542351654698313, 9.983196001486525948829947256632, 10.25079254161265134680590827031, 10.88459825257715122944784025758, 10.99022168541201805180365368170

Graph of the $Z$-function along the critical line