L(s) = 1 | + (−1.20 − 2.09i)2-s + (−0.5 − 0.866i)3-s + (−1.91 + 3.31i)4-s − 2.82·5-s + (−1.20 + 2.09i)6-s + (−1.41 + 2.44i)7-s + 4.41·8-s + (−0.499 + 0.866i)9-s + (3.41 + 5.91i)10-s + (−1 − 1.73i)11-s + 3.82·12-s + 6.82·14-s + (1.41 + 2.44i)15-s + (−1.49 − 2.59i)16-s + (1.82 − 3.16i)17-s + 2.41·18-s + ⋯ |
L(s) = 1 | + (−0.853 − 1.47i)2-s + (−0.288 − 0.499i)3-s + (−0.957 + 1.65i)4-s − 1.26·5-s + (−0.492 + 0.853i)6-s + (−0.534 + 0.925i)7-s + 1.56·8-s + (−0.166 + 0.288i)9-s + (1.07 + 1.87i)10-s + (−0.301 − 0.522i)11-s + 1.10·12-s + 1.82·14-s + (0.365 + 0.632i)15-s + (−0.374 − 0.649i)16-s + (0.443 − 0.768i)17-s + 0.569·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.522+0.852i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(484,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.522+0.852i)
|
Particular Values
L(1) |
≈ |
0.368101−0.206275i |
L(21) |
≈ |
0.368101−0.206275i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 13 | 1 |
good | 2 | 1+(1.20+2.09i)T+(−1+1.73i)T2 |
| 5 | 1+2.82T+5T2 |
| 7 | 1+(1.41−2.44i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.82+3.16i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.41+2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2−3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1+1.73i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.82T+31T2 |
| 37 | 1+(−1.82−3.16i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.41−9.37i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.82−8.36i)T+(−21.5−37.2i)T2 |
| 47 | 1−0.343T+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+(1.82−3.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.65+8.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.585−1.01i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1+1.73i)T+(−35.5−61.4i)T2 |
| 73 | 1+11.6T+73T2 |
| 79 | 1−11.3T+79T2 |
| 83 | 1−7.65T+83T2 |
| 89 | 1+(−4.58−7.94i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.82−6.63i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13222969888195980429462597313, −9.883618923950290099840161393058, −9.173615530531791896315117298857, −8.189742476520684086030066841045, −7.63766527649877479335388198009, −6.24109139264742190503335946828, −4.79152638643166828516196947337, −3.33327621237102495705815664279, −2.68088528151026880490290176226, −0.878569479498000340097638638849,
0.51156222768782491682817702019, 3.61134353718673147896807893578, 4.53521804362827743023511464805, 5.69883922840257998416938983799, 6.78441309465247104042041703103, 7.44887170621006871566221752535, 8.158344428701247027218031688698, 9.053173692677022045589583625512, 10.17901611257579890689381422858, 10.51147240422101642633235870186