L(s) = 1 | + 2·3-s + 4-s + 9-s + 2·12-s + 4·16-s − 12·17-s − 20·25-s − 2·27-s − 12·29-s + 36-s − 8·43-s + 8·48-s + 2·49-s − 24·51-s + 24·53-s + 4·61-s + 11·64-s − 12·68-s − 40·75-s − 32·79-s − 4·81-s − 24·87-s − 20·100-s + 12·101-s − 32·103-s − 24·107-s − 2·108-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s + 1/3·9-s + 0.577·12-s + 16-s − 2.91·17-s − 4·25-s − 0.384·27-s − 2.22·29-s + 1/6·36-s − 1.21·43-s + 1.15·48-s + 2/7·49-s − 3.36·51-s + 3.29·53-s + 0.512·61-s + 11/8·64-s − 1.45·68-s − 4.61·75-s − 3.60·79-s − 4/9·81-s − 2.57·87-s − 2·100-s + 1.19·101-s − 3.15·103-s − 2.32·107-s − 0.192·108-s + ⋯ |
Λ(s)=(=((34⋅138)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅138)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅138
|
Sign: |
1
|
Analytic conductor: |
268.621 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅138, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9838901723 |
L(21) |
≈ |
0.9838901723 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−T+T2)2 |
| 13 | | 1 |
good | 2 | C23 | 1−T2−3T4−p2T6+p4T8 |
| 5 | C2 | (1+pT2)4 |
| 7 | C22×C22 | (1−13T2+p2T4)(1+11T2+p2T4) |
| 11 | C23 | 1−10T2−21T4−10p2T6+p4T8 |
| 17 | C22 | (1+6T+19T2+6pT3+p2T4)2 |
| 19 | C22×C22 | (1−37T2+p2T4)(1+11T2+p2T4) |
| 23 | C22 | (1−pT2+p2T4)2 |
| 29 | C22 | (1+6T+7T2+6pT3+p2T4)2 |
| 31 | C22 | (1+50T2+p2T4)2 |
| 37 | C22×C22 | (1−73T2+p2T4)(1+47T2+p2T4) |
| 41 | C23 | 1−34T2−525T4−34p2T6+p4T8 |
| 43 | C22 | (1+4T−27T2+4pT3+p2T4)2 |
| 47 | C22 | (1+82T2+p2T4)2 |
| 53 | C2 | (1−6T+pT2)4 |
| 59 | C23 | 1−10T2−3381T4−10p2T6+p4T8 |
| 61 | C22 | (1−2T−57T2−2pT3+p2T4)2 |
| 67 | C23 | 1−26T2−3813T4−26p2T6+p4T8 |
| 71 | C23 | 1−130T2+11859T4−130p2T6+p4T8 |
| 73 | C2 | (1+pT2)4 |
| 79 | C2 | (1+8T+pT2)4 |
| 83 | C22 | (1+154T2+p2T4)2 |
| 89 | C23 | 1−130T2+8979T4−130p2T6+p4T8 |
| 97 | C22×C22 | (1−169T2+p2T4)(1+167T2+p2T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.105864610898901813475340139241, −7.54680014348575957132171804626, −7.40846100464523643984076280573, −7.27017958399500349143551862434, −7.06214387103409971680685012792, −6.60014161382903242036073866970, −6.57274609028942619329965000870, −6.21434428146745364696109689731, −5.78741246628291012785137877972, −5.71132870315572181055302443724, −5.47761857973137237889707746894, −5.30381557664612946007544395456, −4.85090603086031049925575186469, −4.33232017353456202698221065040, −4.02311220813120766645505299471, −3.96586037906396517021802940317, −3.88752404187981442698898770881, −3.52649651814239581667528243385, −2.95834841522328463941104787985, −2.58674421072034485304408973566, −2.47213258723872095346986646651, −2.00196344104988349130777804531, −1.82202202495074669595275408454, −1.51288112759546948772989045946, −0.26348764836235493063783754692,
0.26348764836235493063783754692, 1.51288112759546948772989045946, 1.82202202495074669595275408454, 2.00196344104988349130777804531, 2.47213258723872095346986646651, 2.58674421072034485304408973566, 2.95834841522328463941104787985, 3.52649651814239581667528243385, 3.88752404187981442698898770881, 3.96586037906396517021802940317, 4.02311220813120766645505299471, 4.33232017353456202698221065040, 4.85090603086031049925575186469, 5.30381557664612946007544395456, 5.47761857973137237889707746894, 5.71132870315572181055302443724, 5.78741246628291012785137877972, 6.21434428146745364696109689731, 6.57274609028942619329965000870, 6.60014161382903242036073866970, 7.06214387103409971680685012792, 7.27017958399500349143551862434, 7.40846100464523643984076280573, 7.54680014348575957132171804626, 8.105864610898901813475340139241