L(s) = 1 | + (1.34 + 2.33i)2-s + (0.5 + 0.866i)3-s + (−2.62 + 4.54i)4-s + 1.04·5-s + (−1.34 + 2.33i)6-s + (0.277 − 0.480i)7-s − 8.74·8-s + (−0.499 + 0.866i)9-s + (1.41 + 2.44i)10-s + (1.45 + 2.52i)11-s − 5.24·12-s + 1.49·14-s + (0.524 + 0.908i)15-s + (−6.51 − 11.2i)16-s + (2.42 − 4.20i)17-s − 2.69·18-s + ⋯ |
L(s) = 1 | + (0.951 + 1.64i)2-s + (0.288 + 0.499i)3-s + (−1.31 + 2.27i)4-s + 0.469·5-s + (−0.549 + 0.951i)6-s + (0.104 − 0.181i)7-s − 3.09·8-s + (−0.166 + 0.288i)9-s + (0.446 + 0.773i)10-s + (0.438 + 0.760i)11-s − 1.51·12-s + 0.399·14-s + (0.135 + 0.234i)15-s + (−1.62 − 2.82i)16-s + (0.588 − 1.01i)17-s − 0.634·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.997+0.0743i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.997+0.0743i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.997+0.0743i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(484,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.997+0.0743i)
|
Particular Values
L(1) |
≈ |
0.0906094−2.43525i |
L(21) |
≈ |
0.0906094−2.43525i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(−1.34−2.33i)T+(−1+1.73i)T2 |
| 5 | 1−1.04T+5T2 |
| 7 | 1+(−0.277+0.480i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.45−2.52i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.42+4.20i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.376−0.652i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.88+4.99i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.955−1.65i)T+(−14.5+25.1i)T2 |
| 31 | 1−9.51T+31T2 |
| 37 | 1+(−2.87−4.98i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.45−4.25i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.54+9.61i)T+(−21.5−37.2i)T2 |
| 47 | 1+0.753T+47T2 |
| 53 | 1+7.58T+53T2 |
| 59 | 1+(−2.04+3.54i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.71+2.96i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.936+1.62i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.25−9.09i)T+(−35.5−61.4i)T2 |
| 73 | 1+10.4T+73T2 |
| 79 | 1−1.33T+79T2 |
| 83 | 1+2.64T+83T2 |
| 89 | 1+(−4.96−8.59i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−8.53+14.7i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74676510240874458923900059027, −10.12868953291045272046734106401, −9.382190512647140656892717002909, −8.379451858511615424106482198443, −7.59940198985359772739241996957, −6.66082296115319693703564757596, −5.82622542458376858618406577847, −4.77135688358494427192761258073, −4.15746545763124965180406677480, −2.81355308710825158780751388134,
1.18866325473658283854390771567, 2.27421361911415527655537154334, 3.36801796273384047003738867504, 4.31191163403381028596272759754, 5.73266012847901523304275944795, 6.15071238785591016747396070070, 7.969382278860365385591019857795, 9.061397919949978956209857694465, 9.831743737037203823011563929265, 10.64165252177549007667040555709