Properties

Label 8-507e4-1.1-c1e4-0-5
Degree $8$
Conductor $66074188401$
Sign $1$
Analytic cond. $268.621$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·7-s + 6·9-s − 16-s − 4·19-s + 16·21-s + 4·27-s + 20·31-s − 4·37-s + 4·48-s + 8·49-s + 16·57-s + 32·61-s − 24·63-s + 20·67-s − 4·73-s − 40·79-s − 37·81-s − 80·93-s − 28·97-s − 4·109-s + 16·111-s + 4·112-s + 127-s + 131-s + 16·133-s + 137-s + ⋯
L(s)  = 1  − 2.30·3-s − 1.51·7-s + 2·9-s − 1/4·16-s − 0.917·19-s + 3.49·21-s + 0.769·27-s + 3.59·31-s − 0.657·37-s + 0.577·48-s + 8/7·49-s + 2.11·57-s + 4.09·61-s − 3.02·63-s + 2.44·67-s − 0.468·73-s − 4.50·79-s − 4.11·81-s − 8.29·93-s − 2.84·97-s − 0.383·109-s + 1.51·111-s + 0.377·112-s + 0.0887·127-s + 0.0873·131-s + 1.38·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(268.621\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3960065740\)
\(L(\frac12)\) \(\approx\) \(0.3960065740\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13 \( 1 \)
good2$C_2^3$ \( 1 + T^{4} + p^{4} T^{8} \)
5$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )( 1 + 8 T^{2} + p^{2} T^{4} ) \)
7$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 206 T^{4} + p^{4} T^{8} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^3$ \( 1 + 2722 T^{4} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 1666 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 3442 T^{4} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^3$ \( 1 + 5794 T^{4} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 3374 T^{4} + p^{4} T^{8} \)
89$C_2^3$ \( 1 - 15518 T^{4} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83822947520880574577364654393, −7.59181066812645919498436541365, −7.14141003972742684763235584438, −6.75899751472245250071524594636, −6.75660616510535113707480455451, −6.74557801224362246443472253505, −6.53910000091238888954378893823, −6.16030917518269674007320590691, −5.85971717573553252982609541817, −5.69794730910731047127424763801, −5.53266345040913408084528041862, −5.25512262109101644874096447763, −4.94803908289710508373848657373, −4.60827072143380032191079711651, −4.42871004452897072754881790645, −4.09101466394133302183611782626, −3.86625601007857624888927256146, −3.49778355333802456078703988908, −2.86027029231990694911627953365, −2.73324232175376469880236674273, −2.66679232346809366379394973186, −1.99684177936964598146125445298, −1.28217490816909952836313307976, −0.825172695563514558197423061919, −0.35295455859912775921321378120, 0.35295455859912775921321378120, 0.825172695563514558197423061919, 1.28217490816909952836313307976, 1.99684177936964598146125445298, 2.66679232346809366379394973186, 2.73324232175376469880236674273, 2.86027029231990694911627953365, 3.49778355333802456078703988908, 3.86625601007857624888927256146, 4.09101466394133302183611782626, 4.42871004452897072754881790645, 4.60827072143380032191079711651, 4.94803908289710508373848657373, 5.25512262109101644874096447763, 5.53266345040913408084528041862, 5.69794730910731047127424763801, 5.85971717573553252982609541817, 6.16030917518269674007320590691, 6.53910000091238888954378893823, 6.74557801224362246443472253505, 6.75660616510535113707480455451, 6.75899751472245250071524594636, 7.14141003972742684763235584438, 7.59181066812645919498436541365, 7.83822947520880574577364654393

Graph of the $Z$-function along the critical line