L(s) = 1 | − 4·3-s − 4·7-s + 6·9-s − 16-s − 4·19-s + 16·21-s + 4·27-s + 20·31-s − 4·37-s + 4·48-s + 8·49-s + 16·57-s + 32·61-s − 24·63-s + 20·67-s − 4·73-s − 40·79-s − 37·81-s − 80·93-s − 28·97-s − 4·109-s + 16·111-s + 4·112-s + 127-s + 131-s + 16·133-s + 137-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 1.51·7-s + 2·9-s − 1/4·16-s − 0.917·19-s + 3.49·21-s + 0.769·27-s + 3.59·31-s − 0.657·37-s + 0.577·48-s + 8/7·49-s + 2.11·57-s + 4.09·61-s − 3.02·63-s + 2.44·67-s − 0.468·73-s − 4.50·79-s − 4.11·81-s − 8.29·93-s − 2.84·97-s − 0.383·109-s + 1.51·111-s + 0.377·112-s + 0.0887·127-s + 0.0873·131-s + 1.38·133-s + 0.0854·137-s + ⋯ |
Λ(s)=(=((34⋅138)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅138)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅138
|
Sign: |
1
|
Analytic conductor: |
268.621 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅138, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3960065740 |
L(21) |
≈ |
0.3960065740 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1+2T+pT2)2 |
| 13 | | 1 |
good | 2 | C23 | 1+T4+p4T8 |
| 5 | C22×C22 | (1−8T2+p2T4)(1+8T2+p2T4) |
| 7 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 11 | C23 | 1−206T4+p4T8 |
| 17 | C2 | (1+pT2)4 |
| 19 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 23 | C22 | (1−26T2+p2T4)2 |
| 29 | C22 | (1−50T2+p2T4)2 |
| 31 | C22 | (1−10T+50T2−10pT3+p2T4)2 |
| 37 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 41 | C23 | 1+2722T4+p4T8 |
| 43 | C22 | (1−50T2+p2T4)2 |
| 47 | C23 | 1+1666T4+p4T8 |
| 53 | C22 | (1−74T2+p2T4)2 |
| 59 | C23 | 1+3442T4+p4T8 |
| 61 | C2 | (1−8T+pT2)4 |
| 67 | C22 | (1−10T+50T2−10pT3+p2T4)2 |
| 71 | C23 | 1+5794T4+p4T8 |
| 73 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 79 | C2 | (1+10T+pT2)4 |
| 83 | C23 | 1−3374T4+p4T8 |
| 89 | C23 | 1−15518T4+p4T8 |
| 97 | C22 | (1+14T+98T2+14pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83822947520880574577364654393, −7.59181066812645919498436541365, −7.14141003972742684763235584438, −6.75899751472245250071524594636, −6.75660616510535113707480455451, −6.74557801224362246443472253505, −6.53910000091238888954378893823, −6.16030917518269674007320590691, −5.85971717573553252982609541817, −5.69794730910731047127424763801, −5.53266345040913408084528041862, −5.25512262109101644874096447763, −4.94803908289710508373848657373, −4.60827072143380032191079711651, −4.42871004452897072754881790645, −4.09101466394133302183611782626, −3.86625601007857624888927256146, −3.49778355333802456078703988908, −2.86027029231990694911627953365, −2.73324232175376469880236674273, −2.66679232346809366379394973186, −1.99684177936964598146125445298, −1.28217490816909952836313307976, −0.825172695563514558197423061919, −0.35295455859912775921321378120,
0.35295455859912775921321378120, 0.825172695563514558197423061919, 1.28217490816909952836313307976, 1.99684177936964598146125445298, 2.66679232346809366379394973186, 2.73324232175376469880236674273, 2.86027029231990694911627953365, 3.49778355333802456078703988908, 3.86625601007857624888927256146, 4.09101466394133302183611782626, 4.42871004452897072754881790645, 4.60827072143380032191079711651, 4.94803908289710508373848657373, 5.25512262109101644874096447763, 5.53266345040913408084528041862, 5.69794730910731047127424763801, 5.85971717573553252982609541817, 6.16030917518269674007320590691, 6.53910000091238888954378893823, 6.74557801224362246443472253505, 6.75660616510535113707480455451, 6.75899751472245250071524594636, 7.14141003972742684763235584438, 7.59181066812645919498436541365, 7.83822947520880574577364654393