L(s) = 1 | + 1.73·3-s − 2i·4-s + (3.09 + 3.09i)7-s + 2.99·9-s − 3.46i·12-s − 4·16-s + (−2.26 + 2.26i)19-s + (5.36 + 5.36i)21-s − 5i·25-s + 5.19·27-s + (6.19 − 6.19i)28-s + (0.830 − 0.830i)31-s − 5.99i·36-s + (−8.46 − 8.46i)37-s + 1.73i·43-s + ⋯ |
L(s) = 1 | + 1.00·3-s − i·4-s + (1.17 + 1.17i)7-s + 0.999·9-s − 0.999i·12-s − 16-s + (−0.520 + 0.520i)19-s + (1.17 + 1.17i)21-s − i·25-s + 1.00·27-s + (1.17 − 1.17i)28-s + (0.149 − 0.149i)31-s − 0.999i·36-s + (−1.39 − 1.39i)37-s + 0.264i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.17242 - 0.321668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.17242 - 0.321668i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2iT^{2} \) |
| 5 | \( 1 + 5iT^{2} \) |
| 7 | \( 1 + (-3.09 - 3.09i)T + 7iT^{2} \) |
| 11 | \( 1 - 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + (2.26 - 2.26i)T - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (-0.830 + 0.830i)T - 31iT^{2} \) |
| 37 | \( 1 + (8.46 + 8.46i)T + 37iT^{2} \) |
| 41 | \( 1 + 41iT^{2} \) |
| 43 | \( 1 - 1.73iT - 43T^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 - 8.66T + 61T^{2} \) |
| 67 | \( 1 + (11.5 - 11.5i)T - 67iT^{2} \) |
| 71 | \( 1 + 71iT^{2} \) |
| 73 | \( 1 + (7.63 + 7.63i)T + 73iT^{2} \) |
| 79 | \( 1 + 12.1T + 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 - 89iT^{2} \) |
| 97 | \( 1 + (7.02 - 7.02i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70231519726415158838410462051, −9.949215518502308110413263137817, −8.882016183464391243933687964247, −8.493162812494041066391399964481, −7.38318813135460189955454378731, −6.13600869747433017216839382978, −5.19014445140734830202037017848, −4.20998871526297960127435630745, −2.49641399468138284479520037360, −1.65867033055484333747565087492,
1.67722203884899974366815108604, 3.10626912948006536621911433562, 4.08615422428834798132064129461, 4.85577079397094602955820392245, 6.89921467456461448234756600202, 7.43921663760680981755768897117, 8.278336986794601750992838545987, 8.845174159931809766541751142262, 10.05911361376090806514910565905, 10.95296835000448805075020943361