L(s) = 1 | + 1.73·3-s − 2i·4-s + (3.09 + 3.09i)7-s + 2.99·9-s − 3.46i·12-s − 4·16-s + (−2.26 + 2.26i)19-s + (5.36 + 5.36i)21-s − 5i·25-s + 5.19·27-s + (6.19 − 6.19i)28-s + (0.830 − 0.830i)31-s − 5.99i·36-s + (−8.46 − 8.46i)37-s + 1.73i·43-s + ⋯ |
L(s) = 1 | + 1.00·3-s − i·4-s + (1.17 + 1.17i)7-s + 0.999·9-s − 0.999i·12-s − 16-s + (−0.520 + 0.520i)19-s + (1.17 + 1.17i)21-s − i·25-s + 1.00·27-s + (1.17 − 1.17i)28-s + (0.149 − 0.149i)31-s − 0.999i·36-s + (−1.39 − 1.39i)37-s + 0.264i·43-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.957+0.289i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.957+0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.957+0.289i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.957+0.289i)
|
Particular Values
L(1) |
≈ |
2.17242−0.321668i |
L(21) |
≈ |
2.17242−0.321668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−1.73T |
| 13 | 1 |
good | 2 | 1+2iT2 |
| 5 | 1+5iT2 |
| 7 | 1+(−3.09−3.09i)T+7iT2 |
| 11 | 1−11iT2 |
| 17 | 1+17T2 |
| 19 | 1+(2.26−2.26i)T−19iT2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1+(−0.830+0.830i)T−31iT2 |
| 37 | 1+(8.46+8.46i)T+37iT2 |
| 41 | 1+41iT2 |
| 43 | 1−1.73iT−43T2 |
| 47 | 1−47iT2 |
| 53 | 1−53T2 |
| 59 | 1−59iT2 |
| 61 | 1−8.66T+61T2 |
| 67 | 1+(11.5−11.5i)T−67iT2 |
| 71 | 1+71iT2 |
| 73 | 1+(7.63+7.63i)T+73iT2 |
| 79 | 1+12.1T+79T2 |
| 83 | 1+83iT2 |
| 89 | 1−89iT2 |
| 97 | 1+(7.02−7.02i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70231519726415158838410462051, −9.949215518502308110413263137817, −8.882016183464391243933687964247, −8.493162812494041066391399964481, −7.38318813135460189955454378731, −6.13600869747433017216839382978, −5.19014445140734830202037017848, −4.20998871526297960127435630745, −2.49641399468138284479520037360, −1.65867033055484333747565087492,
1.67722203884899974366815108604, 3.10626912948006536621911433562, 4.08615422428834798132064129461, 4.85577079397094602955820392245, 6.89921467456461448234756600202, 7.43921663760680981755768897117, 8.278336986794601750992838545987, 8.845174159931809766541751142262, 10.05911361376090806514910565905, 10.95296835000448805075020943361