L(s) = 1 | + (−1.69 − 1.69i)2-s − 1.73·3-s + 3.73i·4-s + (−1.23 − 1.23i)5-s + (2.93 + 2.93i)6-s + (2.93 − 2.93i)8-s + 2.99·9-s + 4.19i·10-s + (4.62 − 4.62i)11-s − 6.46i·12-s + (2.14 + 2.14i)15-s − 2.46·16-s + (−5.07 − 5.07i)18-s + (4.62 − 4.62i)20-s − 15.6·22-s + ⋯ |
L(s) = 1 | + (−1.19 − 1.19i)2-s − 1.00·3-s + 1.86i·4-s + (−0.554 − 0.554i)5-s + (1.19 + 1.19i)6-s + (1.03 − 1.03i)8-s + 0.999·9-s + 1.32i·10-s + (1.39 − 1.39i)11-s − 1.86i·12-s + (0.554 + 0.554i)15-s − 0.616·16-s + (−1.19 − 1.19i)18-s + (1.03 − 1.03i)20-s − 3.33·22-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.957−0.289i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.957−0.289i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.957−0.289i)
|
Particular Values
L(1) |
≈ |
0.0524409+0.354166i |
L(21) |
≈ |
0.0524409+0.354166i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+1.73T |
| 13 | 1 |
good | 2 | 1+(1.69+1.69i)T+2iT2 |
| 5 | 1+(1.23+1.23i)T+5iT2 |
| 7 | 1+7iT2 |
| 11 | 1+(−4.62+4.62i)T−11iT2 |
| 17 | 1+17T2 |
| 19 | 1−19iT2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1−31iT2 |
| 37 | 1+37iT2 |
| 41 | 1+(5.53+5.53i)T+41iT2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+(7.10−7.10i)T−47iT2 |
| 53 | 1−53T2 |
| 59 | 1+(0.332−0.332i)T−59iT2 |
| 61 | 1−13.8T+61T2 |
| 67 | 1−67iT2 |
| 71 | 1+(11.3+11.3i)T+71iT2 |
| 73 | 1+73iT2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+(8.91+8.91i)T+83iT2 |
| 89 | 1+(3.05−3.05i)T−89iT2 |
| 97 | 1−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55224015262241203045291256931, −9.670151954331657137084752914666, −8.795127409385298445395348240656, −8.153914594461172768075226261279, −6.90096393378889863103559155319, −5.80308974991411047295512309273, −4.33789755386919939016430319827, −3.37124666151352713988568052088, −1.47998144922730687466026414876, −0.41867206179546221929824922636,
1.43933373722273104205715592922, 3.98152206935158859395202247106, 5.16508319906434781603128638315, 6.34171707869110473580380117646, 6.96235816735254795831297167934, 7.45085446184231745133837866199, 8.651598694586480859741007533325, 9.695153232119295266080528387262, 10.14360053890275136933341888512, 11.28226484144919312067932750781