L(s) = 1 | + (−1.69 − 1.69i)2-s − 1.73·3-s + 3.73i·4-s + (−1.23 − 1.23i)5-s + (2.93 + 2.93i)6-s + (2.93 − 2.93i)8-s + 2.99·9-s + 4.19i·10-s + (4.62 − 4.62i)11-s − 6.46i·12-s + (2.14 + 2.14i)15-s − 2.46·16-s + (−5.07 − 5.07i)18-s + (4.62 − 4.62i)20-s − 15.6·22-s + ⋯ |
L(s) = 1 | + (−1.19 − 1.19i)2-s − 1.00·3-s + 1.86i·4-s + (−0.554 − 0.554i)5-s + (1.19 + 1.19i)6-s + (1.03 − 1.03i)8-s + 0.999·9-s + 1.32i·10-s + (1.39 − 1.39i)11-s − 1.86i·12-s + (0.554 + 0.554i)15-s − 0.616·16-s + (−1.19 − 1.19i)18-s + (1.03 − 1.03i)20-s − 3.33·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0524409 + 0.354166i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0524409 + 0.354166i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.69 + 1.69i)T + 2iT^{2} \) |
| 5 | \( 1 + (1.23 + 1.23i)T + 5iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + (-4.62 + 4.62i)T - 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + (5.53 + 5.53i)T + 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (7.10 - 7.10i)T - 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (0.332 - 0.332i)T - 59iT^{2} \) |
| 61 | \( 1 - 13.8T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 + (11.3 + 11.3i)T + 71iT^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 + (8.91 + 8.91i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.05 - 3.05i)T - 89iT^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55224015262241203045291256931, −9.670151954331657137084752914666, −8.795127409385298445395348240656, −8.153914594461172768075226261279, −6.90096393378889863103559155319, −5.80308974991411047295512309273, −4.33789755386919939016430319827, −3.37124666151352713988568052088, −1.47998144922730687466026414876, −0.41867206179546221929824922636,
1.43933373722273104205715592922, 3.98152206935158859395202247106, 5.16508319906434781603128638315, 6.34171707869110473580380117646, 6.96235816735254795831297167934, 7.45085446184231745133837866199, 8.651598694586480859741007533325, 9.695153232119295266080528387262, 10.14360053890275136933341888512, 11.28226484144919312067932750781