L(s) = 1 | + (1.69 + 1.69i)2-s + (−0.366 + 1.69i)3-s + 3.73i·4-s + (1.69 + 1.69i)5-s + (−3.48 + 2.24i)6-s + (−1 − i)7-s + (−2.93 + 2.93i)8-s + (−2.73 − 1.23i)9-s + 5.73i·10-s + (1.23 − 1.23i)11-s + (−6.31 − 1.36i)12-s − 3.38i·14-s + (−3.48 + 2.24i)15-s − 2.46·16-s + 2.14·17-s + (−2.52 − 6.72i)18-s + ⋯ |
L(s) = 1 | + (1.19 + 1.19i)2-s + (−0.211 + 0.977i)3-s + 1.86i·4-s + (0.757 + 0.757i)5-s + (−1.42 + 0.917i)6-s + (−0.377 − 0.377i)7-s + (−1.03 + 1.03i)8-s + (−0.910 − 0.413i)9-s + 1.81i·10-s + (0.373 − 0.373i)11-s + (−1.82 − 0.394i)12-s − 0.904i·14-s + (−0.899 + 0.580i)15-s − 0.616·16-s + 0.520·17-s + (−0.595 − 1.58i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.980−0.198i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.980−0.198i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.980−0.198i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.980−0.198i)
|
Particular Values
L(1) |
≈ |
0.262972+2.62143i |
L(21) |
≈ |
0.262972+2.62143i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.366−1.69i)T |
| 13 | 1 |
good | 2 | 1+(−1.69−1.69i)T+2iT2 |
| 5 | 1+(−1.69−1.69i)T+5iT2 |
| 7 | 1+(1+i)T+7iT2 |
| 11 | 1+(−1.23+1.23i)T−11iT2 |
| 17 | 1−2.14T+17T2 |
| 19 | 1+(−0.732+0.732i)T−19iT2 |
| 23 | 1+23T2 |
| 29 | 1+5.53iT−29T2 |
| 31 | 1+(4.46−4.46i)T−31iT2 |
| 37 | 1+(−4.83−4.83i)T+37iT2 |
| 41 | 1+(0.453+0.453i)T+41iT2 |
| 43 | 1+8.19iT−43T2 |
| 47 | 1+(6.77−6.77i)T−47iT2 |
| 53 | 1−4.62iT−53T2 |
| 59 | 1+(−3.38+3.38i)T−59iT2 |
| 61 | 1+7T+61T2 |
| 67 | 1+(6.19−6.19i)T−67iT2 |
| 71 | 1+(3.38+3.38i)T+71iT2 |
| 73 | 1+(−6.09−6.09i)T+73iT2 |
| 79 | 1−2T+79T2 |
| 83 | 1+(1.23+1.23i)T+83iT2 |
| 89 | 1+(−7.10+7.10i)T−89iT2 |
| 97 | 1+(9.19−9.19i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37301481682894960287201719178, −10.35834460691950569740070693658, −9.666571579510559445786253536440, −8.501862320002860941864392624401, −7.30727389013985837338323838891, −6.35643181333625865873594855432, −5.85614244559148914101319139811, −4.85107761994723456363776783621, −3.80138962565327556255201378034, −2.97219060780929974974974115437,
1.27522687636798636771967110223, 2.19243624944762608849094562519, 3.39080671197382563548933872231, 4.83577485719117528973645449524, 5.61646917153109894097654741854, 6.32112100644091403783122983196, 7.67226141347859155148868675635, 9.031350613132712580229712917305, 9.763061502531668235877935342003, 10.86725014741183431811988811400