L(s) = 1 | + (1.69 + 1.69i)2-s + (−0.366 + 1.69i)3-s + 3.73i·4-s + (1.69 + 1.69i)5-s + (−3.48 + 2.24i)6-s + (−1 − i)7-s + (−2.93 + 2.93i)8-s + (−2.73 − 1.23i)9-s + 5.73i·10-s + (1.23 − 1.23i)11-s + (−6.31 − 1.36i)12-s − 3.38i·14-s + (−3.48 + 2.24i)15-s − 2.46·16-s + 2.14·17-s + (−2.52 − 6.72i)18-s + ⋯ |
L(s) = 1 | + (1.19 + 1.19i)2-s + (−0.211 + 0.977i)3-s + 1.86i·4-s + (0.757 + 0.757i)5-s + (−1.42 + 0.917i)6-s + (−0.377 − 0.377i)7-s + (−1.03 + 1.03i)8-s + (−0.910 − 0.413i)9-s + 1.81i·10-s + (0.373 − 0.373i)11-s + (−1.82 − 0.394i)12-s − 0.904i·14-s + (−0.899 + 0.580i)15-s − 0.616·16-s + 0.520·17-s + (−0.595 − 1.58i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.198i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 - 0.198i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.262972 + 2.62143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.262972 + 2.62143i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.366 - 1.69i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.69 - 1.69i)T + 2iT^{2} \) |
| 5 | \( 1 + (-1.69 - 1.69i)T + 5iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.23 + 1.23i)T - 11iT^{2} \) |
| 17 | \( 1 - 2.14T + 17T^{2} \) |
| 19 | \( 1 + (-0.732 + 0.732i)T - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 5.53iT - 29T^{2} \) |
| 31 | \( 1 + (4.46 - 4.46i)T - 31iT^{2} \) |
| 37 | \( 1 + (-4.83 - 4.83i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.453 + 0.453i)T + 41iT^{2} \) |
| 43 | \( 1 + 8.19iT - 43T^{2} \) |
| 47 | \( 1 + (6.77 - 6.77i)T - 47iT^{2} \) |
| 53 | \( 1 - 4.62iT - 53T^{2} \) |
| 59 | \( 1 + (-3.38 + 3.38i)T - 59iT^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 + (6.19 - 6.19i)T - 67iT^{2} \) |
| 71 | \( 1 + (3.38 + 3.38i)T + 71iT^{2} \) |
| 73 | \( 1 + (-6.09 - 6.09i)T + 73iT^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + (1.23 + 1.23i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.10 + 7.10i)T - 89iT^{2} \) |
| 97 | \( 1 + (9.19 - 9.19i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37301481682894960287201719178, −10.35834460691950569740070693658, −9.666571579510559445786253536440, −8.501862320002860941864392624401, −7.30727389013985837338323838891, −6.35643181333625865873594855432, −5.85614244559148914101319139811, −4.85107761994723456363776783621, −3.80138962565327556255201378034, −2.97219060780929974974974115437,
1.27522687636798636771967110223, 2.19243624944762608849094562519, 3.39080671197382563548933872231, 4.83577485719117528973645449524, 5.61646917153109894097654741854, 6.32112100644091403783122983196, 7.67226141347859155148868675635, 9.031350613132712580229712917305, 9.763061502531668235877935342003, 10.86725014741183431811988811400