L(s) = 1 | + (−0.540 − 0.540i)2-s + (0.0858 + 1.72i)3-s − 1.41i·4-s + (0.996 + 0.996i)5-s + (0.888 − 0.981i)6-s + (1.80 + 1.80i)7-s + (−1.84 + 1.84i)8-s + (−2.98 + 0.296i)9-s − 1.07i·10-s + (−3.35 + 3.35i)11-s + (2.44 − 0.121i)12-s − 1.94i·14-s + (−1.63 + 1.80i)15-s − 0.837·16-s + 5.80·17-s + (1.77 + 1.45i)18-s + ⋯ |
L(s) = 1 | + (−0.382 − 0.382i)2-s + (0.0495 + 0.998i)3-s − 0.708i·4-s + (0.445 + 0.445i)5-s + (0.362 − 0.400i)6-s + (0.681 + 0.681i)7-s + (−0.652 + 0.652i)8-s + (−0.995 + 0.0989i)9-s − 0.340i·10-s + (−1.01 + 1.01i)11-s + (0.707 − 0.0350i)12-s − 0.520i·14-s + (−0.422 + 0.467i)15-s − 0.209·16-s + 1.40·17-s + (0.417 + 0.342i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.0736−0.997i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.0736−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.0736−0.997i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.0736−0.997i)
|
Particular Values
L(1) |
≈ |
0.787995+0.731921i |
L(21) |
≈ |
0.787995+0.731921i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.0858−1.72i)T |
| 13 | 1 |
good | 2 | 1+(0.540+0.540i)T+2iT2 |
| 5 | 1+(−0.996−0.996i)T+5iT2 |
| 7 | 1+(−1.80−1.80i)T+7iT2 |
| 11 | 1+(3.35−3.35i)T−11iT2 |
| 17 | 1−5.80T+17T2 |
| 19 | 1+(2.39−2.39i)T−19iT2 |
| 23 | 1+3.39T+23T2 |
| 29 | 1−6.57iT−29T2 |
| 31 | 1+(0.386−0.386i)T−31iT2 |
| 37 | 1+(−5.93−5.93i)T+37iT2 |
| 41 | 1+(0.734+0.734i)T+41iT2 |
| 43 | 1−7.56iT−43T2 |
| 47 | 1+(−0.243+0.243i)T−47iT2 |
| 53 | 1−2.07iT−53T2 |
| 59 | 1+(3.56−3.56i)T−59iT2 |
| 61 | 1−7.04T+61T2 |
| 67 | 1+(−4.54+4.54i)T−67iT2 |
| 71 | 1+(6.79+6.79i)T+71iT2 |
| 73 | 1+(−6.04−6.04i)T+73iT2 |
| 79 | 1−8.77T+79T2 |
| 83 | 1+(8.31+8.31i)T+83iT2 |
| 89 | 1+(−9.62+9.62i)T−89iT2 |
| 97 | 1+(−1.34+1.34i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79444371254273319893086034090, −10.09069630401630830700970479434, −9.798056300562217766067195148483, −8.649323122474220434667817545352, −7.84383224081159503928270009350, −6.18574379445520170896882035536, −5.40845413938908047879135216829, −4.65348651091447622478199383172, −2.93759930382338909971485111361, −1.93108673412243754568020864078,
0.71491655966636289917736167440, 2.41901246069312047508902490914, 3.72805124006273775740546284561, 5.32679928093137220724192564786, 6.18820325937606783469254170074, 7.41422121579503733210190282682, 7.923196833248429366137498781122, 8.523684377076861793719134593036, 9.585799990698051105209669595065, 10.81469910600148278638445135262