L(s) = 1 | + (−0.540 + 0.540i)2-s + (0.0858 + 1.72i)3-s + 1.41i·4-s + (0.996 − 0.996i)5-s + (−0.981 − 0.888i)6-s + (−1.80 + 1.80i)7-s + (−1.84 − 1.84i)8-s + (−2.98 + 0.296i)9-s + 1.07i·10-s + (−3.35 − 3.35i)11-s + (−2.44 + 0.121i)12-s − 1.94i·14-s + (1.80 + 1.63i)15-s − 0.837·16-s − 5.80·17-s + (1.45 − 1.77i)18-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.382i)2-s + (0.0495 + 0.998i)3-s + 0.708i·4-s + (0.445 − 0.445i)5-s + (−0.400 − 0.362i)6-s + (−0.681 + 0.681i)7-s + (−0.652 − 0.652i)8-s + (−0.995 + 0.0989i)9-s + 0.340i·10-s + (−1.01 − 1.01i)11-s + (−0.707 + 0.0350i)12-s − 0.520i·14-s + (0.467 + 0.422i)15-s − 0.209·16-s − 1.40·17-s + (0.342 − 0.417i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.771+0.636i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.771+0.636i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.771+0.636i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.771+0.636i)
|
Particular Values
L(1) |
≈ |
0.165986−0.461815i |
L(21) |
≈ |
0.165986−0.461815i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.0858−1.72i)T |
| 13 | 1 |
good | 2 | 1+(0.540−0.540i)T−2iT2 |
| 5 | 1+(−0.996+0.996i)T−5iT2 |
| 7 | 1+(1.80−1.80i)T−7iT2 |
| 11 | 1+(3.35+3.35i)T+11iT2 |
| 17 | 1+5.80T+17T2 |
| 19 | 1+(−2.39−2.39i)T+19iT2 |
| 23 | 1−3.39T+23T2 |
| 29 | 1−6.57iT−29T2 |
| 31 | 1+(−0.386−0.386i)T+31iT2 |
| 37 | 1+(5.93−5.93i)T−37iT2 |
| 41 | 1+(0.734−0.734i)T−41iT2 |
| 43 | 1+7.56iT−43T2 |
| 47 | 1+(−0.243−0.243i)T+47iT2 |
| 53 | 1−2.07iT−53T2 |
| 59 | 1+(3.56+3.56i)T+59iT2 |
| 61 | 1−7.04T+61T2 |
| 67 | 1+(4.54+4.54i)T+67iT2 |
| 71 | 1+(6.79−6.79i)T−71iT2 |
| 73 | 1+(6.04−6.04i)T−73iT2 |
| 79 | 1−8.77T+79T2 |
| 83 | 1+(8.31−8.31i)T−83iT2 |
| 89 | 1+(−9.62−9.62i)T+89iT2 |
| 97 | 1+(1.34+1.34i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29390674669068407003711423071, −10.42954171842563566890690370184, −9.358352845990354144613329835879, −8.861967121882180784915834205789, −8.252593429284326970881783114104, −6.89569146987554728763792258309, −5.79828134939649191562905455335, −5.00352332391810949045483478786, −3.53286573605373569119402192896, −2.75237694607163648680288943024,
0.30164150988452616019462070827, 2.00437191366937395691203114452, 2.80537994486316409446654022527, 4.74309536673822725317099114750, 5.95040946932368843697011168476, 6.76353766429349568519596496886, 7.44962069425104202142047611890, 8.730711590437490341167478019563, 9.633854964534891780794601415612, 10.38728113710160771827157830801