L(s) = 1 | + (0.249 − 0.249i)2-s + (0.892 − 1.48i)3-s + 1.87i·4-s + (2.45 − 2.45i)5-s + (−0.147 − 0.592i)6-s + (0.821 − 0.821i)7-s + (0.965 + 0.965i)8-s + (−1.40 − 2.64i)9-s − 1.22i·10-s + (1.32 + 1.32i)11-s + (2.78 + 1.67i)12-s − 0.409i·14-s + (−1.45 − 5.84i)15-s − 3.27·16-s − 5.90·17-s + (−1.01 − 0.309i)18-s + ⋯ |
L(s) = 1 | + (0.176 − 0.176i)2-s + (0.515 − 0.857i)3-s + 0.937i·4-s + (1.09 − 1.09i)5-s + (−0.0602 − 0.241i)6-s + (0.310 − 0.310i)7-s + (0.341 + 0.341i)8-s + (−0.469 − 0.882i)9-s − 0.387i·10-s + (0.399 + 0.399i)11-s + (0.803 + 0.483i)12-s − 0.109i·14-s + (−0.375 − 1.50i)15-s − 0.817·16-s − 1.43·17-s + (−0.238 − 0.0728i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.522+0.852i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.522+0.852i)
|
Particular Values
L(1) |
≈ |
1.93075−1.08184i |
L(21) |
≈ |
1.93075−1.08184i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.892+1.48i)T |
| 13 | 1 |
good | 2 | 1+(−0.249+0.249i)T−2iT2 |
| 5 | 1+(−2.45+2.45i)T−5iT2 |
| 7 | 1+(−0.821+0.821i)T−7iT2 |
| 11 | 1+(−1.32−1.32i)T+11iT2 |
| 17 | 1+5.90T+17T2 |
| 19 | 1+(−3.48−3.48i)T+19iT2 |
| 23 | 1−2.70T+23T2 |
| 29 | 1−2.68iT−29T2 |
| 31 | 1+(3.22+3.22i)T+31iT2 |
| 37 | 1+(−1.52+1.52i)T−37iT2 |
| 41 | 1+(−4.81+4.81i)T−41iT2 |
| 43 | 1−5.55iT−43T2 |
| 47 | 1+(2.23+2.23i)T+47iT2 |
| 53 | 1−2.46iT−53T2 |
| 59 | 1+(7.07+7.07i)T+59iT2 |
| 61 | 1+2.66T+61T2 |
| 67 | 1+(−4.81−4.81i)T+67iT2 |
| 71 | 1+(−8.20+8.20i)T−71iT2 |
| 73 | 1+(9.13−9.13i)T−73iT2 |
| 79 | 1−1.10T+79T2 |
| 83 | 1+(4.58−4.58i)T−83iT2 |
| 89 | 1+(−3.02−3.02i)T+89iT2 |
| 97 | 1+(−8.67−8.67i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98080040119103256305800543606, −9.427637657436993178635320847692, −9.032173509680807816597431853926, −8.095120238411072005417964555941, −7.26610585529591735822238850153, −6.23884075255281335040117822519, −4.99460471146372601503016729839, −3.90771181237077228541232163783, −2.44393233973171126895504893103, −1.44715389558276851262985334367,
1.99142087241178446791936900392, 3.00097329970844626791988792920, 4.52124513885321023082356485642, 5.45358357522140554570869082533, 6.30757791126557854454724896686, 7.18053737930903289332529443075, 8.777499847151895735081864397220, 9.392904450038145113098379422863, 10.11574232624752804658893381444, 10.98092122528453311240234056993