L(s) = 1 | + (−1.42 + 1.42i)2-s + (−1.57 − 0.730i)3-s − 2.07i·4-s + (1.72 − 1.72i)5-s + (3.28 − 1.19i)6-s + (2.20 − 2.20i)7-s + (0.105 + 0.105i)8-s + (1.93 + 2.29i)9-s + 4.91i·10-s + (−1.95 − 1.95i)11-s + (−1.51 + 3.25i)12-s + 6.28i·14-s + (−3.96 + 1.44i)15-s + 3.84·16-s − 5.78·17-s + (−6.03 − 0.515i)18-s + ⋯ |
L(s) = 1 | + (−1.00 + 1.00i)2-s + (−0.906 − 0.421i)3-s − 1.03i·4-s + (0.770 − 0.770i)5-s + (1.34 − 0.489i)6-s + (0.831 − 0.831i)7-s + (0.0372 + 0.0372i)8-s + (0.644 + 0.764i)9-s + 1.55i·10-s + (−0.590 − 0.590i)11-s + (−0.437 + 0.940i)12-s + 1.67i·14-s + (−1.02 + 0.373i)15-s + 0.961·16-s − 1.40·17-s + (−1.42 − 0.121i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.0145+0.999i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.0145+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.0145+0.999i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.0145+0.999i)
|
Particular Values
L(1) |
≈ |
0.328734−0.323969i |
L(21) |
≈ |
0.328734−0.323969i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.57+0.730i)T |
| 13 | 1 |
good | 2 | 1+(1.42−1.42i)T−2iT2 |
| 5 | 1+(−1.72+1.72i)T−5iT2 |
| 7 | 1+(−2.20+2.20i)T−7iT2 |
| 11 | 1+(1.95+1.95i)T+11iT2 |
| 17 | 1+5.78T+17T2 |
| 19 | 1+(1.06+1.06i)T+19iT2 |
| 23 | 1+3.86T+23T2 |
| 29 | 1−2.92iT−29T2 |
| 31 | 1+(3.56+3.56i)T+31iT2 |
| 37 | 1+(−2.83+2.83i)T−37iT2 |
| 41 | 1+(−4.79+4.79i)T−41iT2 |
| 43 | 1−1.84iT−43T2 |
| 47 | 1+(−0.115−0.115i)T+47iT2 |
| 53 | 1+10.0iT−53T2 |
| 59 | 1+(1.22+1.22i)T+59iT2 |
| 61 | 1+5.39T+61T2 |
| 67 | 1+(9.65+9.65i)T+67iT2 |
| 71 | 1+(0.239−0.239i)T−71iT2 |
| 73 | 1+(8.54−8.54i)T−73iT2 |
| 79 | 1−10.4T+79T2 |
| 83 | 1+(−2.83+2.83i)T−83iT2 |
| 89 | 1+(−3.00−3.00i)T+89iT2 |
| 97 | 1+(6.99+6.99i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67069578915175867253752703762, −9.636408120232575363680695167022, −8.733579313362687662688405364431, −7.899941935700200335353720479503, −7.15531129566005872930949563341, −6.17157994583765956409065302635, −5.42845400978754467046254237867, −4.39779052179380648687511603467, −1.78067541160611119220414621616, −0.42073744241789426135081391117,
1.79113811431017352252476764307, 2.64438751125992213647916930452, 4.43336770451677560977975615028, 5.59502183345908268390448849414, 6.40557452476354963541770319709, 7.75062963446785471150068928539, 8.884257893180446111841019160259, 9.598490055641155631611235548226, 10.48891496299737237913382887208, 10.80611093920414794995824449297