L(s) = 1 | + (−2.21 + 1.28i)2-s + (−0.5 − 0.866i)3-s + (2.28 − 3.95i)4-s − 0.561i·5-s + (2.21 + 1.28i)6-s + (3.08 + 1.78i)7-s + 6.56i·8-s + (−0.499 + 0.866i)9-s + (0.719 + 1.24i)10-s + (−1.73 + i)11-s − 4.56·12-s − 9.12·14-s + (−0.486 + 0.280i)15-s + (−3.84 − 6.65i)16-s + (1.28 − 2.21i)17-s − 2.56i·18-s + ⋯ |
L(s) = 1 | + (−1.56 + 0.905i)2-s + (−0.288 − 0.499i)3-s + (1.14 − 1.97i)4-s − 0.251i·5-s + (0.905 + 0.522i)6-s + (1.16 + 0.673i)7-s + 2.31i·8-s + (−0.166 + 0.288i)9-s + (0.227 + 0.393i)10-s + (−0.522 + 0.301i)11-s − 1.31·12-s − 2.43·14-s + (−0.125 + 0.0724i)15-s + (−0.960 − 1.66i)16-s + (0.310 − 0.538i)17-s − 0.603i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.702 - 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.702 - 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.612303 + 0.255927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.612303 + 0.255927i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (2.21 - 1.28i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + 0.561iT - 5T^{2} \) |
| 7 | \( 1 + (-3.08 - 1.78i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.73 - i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.28 + 2.21i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.972 + 0.561i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1 - 1.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.84 - 4.92i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.56iT - 31T^{2} \) |
| 37 | \( 1 + (-2.97 + 1.71i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.21 - 1.28i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.219 + 0.379i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.24iT - 47T^{2} \) |
| 53 | \( 1 - 11.6T + 53T^{2} \) |
| 59 | \( 1 + (-9.63 - 5.56i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.06 - 10.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.379 - 0.219i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-12.1 - 7i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.87iT - 73T^{2} \) |
| 79 | \( 1 - 9.56T + 79T^{2} \) |
| 83 | \( 1 - 9.12iT - 83T^{2} \) |
| 89 | \( 1 + (-11.3 + 6.56i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.84 + 2.21i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81774852979569924506364770592, −9.988820380433400401719544755728, −8.815254266720033840451595568797, −8.447419428593932565464517554435, −7.48581874907980893937014822043, −6.85273883288309229155922255746, −5.59192438597954214102621499995, −5.00183407881278575081353542156, −2.31582799341852914681894039369, −1.08197688517649470736827724740,
0.903118071279828179056018451984, 2.36259700712080783233910407137, 3.67878274951395642826261104006, 4.90590418366153579172877211429, 6.49422558333374625063223148021, 7.73446155305829222216194821087, 8.194637586558895335113505887886, 9.156400396442700653367677245402, 10.19492366505295259586542301142, 10.65829342016888750166436349439