L(s) = 1 | + (−2.21 + 1.28i)2-s + (−0.5 − 0.866i)3-s + (2.28 − 3.95i)4-s − 0.561i·5-s + (2.21 + 1.28i)6-s + (3.08 + 1.78i)7-s + 6.56i·8-s + (−0.499 + 0.866i)9-s + (0.719 + 1.24i)10-s + (−1.73 + i)11-s − 4.56·12-s − 9.12·14-s + (−0.486 + 0.280i)15-s + (−3.84 − 6.65i)16-s + (1.28 − 2.21i)17-s − 2.56i·18-s + ⋯ |
L(s) = 1 | + (−1.56 + 0.905i)2-s + (−0.288 − 0.499i)3-s + (1.14 − 1.97i)4-s − 0.251i·5-s + (0.905 + 0.522i)6-s + (1.16 + 0.673i)7-s + 2.31i·8-s + (−0.166 + 0.288i)9-s + (0.227 + 0.393i)10-s + (−0.522 + 0.301i)11-s − 1.31·12-s − 2.43·14-s + (−0.125 + 0.0724i)15-s + (−0.960 − 1.66i)16-s + (0.310 − 0.538i)17-s − 0.603i·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.702−0.711i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.702−0.711i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.702−0.711i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.702−0.711i)
|
Particular Values
L(1) |
≈ |
0.612303+0.255927i |
L(21) |
≈ |
0.612303+0.255927i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 13 | 1 |
good | 2 | 1+(2.21−1.28i)T+(1−1.73i)T2 |
| 5 | 1+0.561iT−5T2 |
| 7 | 1+(−3.08−1.78i)T+(3.5+6.06i)T2 |
| 11 | 1+(1.73−i)T+(5.5−9.52i)T2 |
| 17 | 1+(−1.28+2.21i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.972+0.561i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1−1.73i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.84−4.92i)T+(−14.5+25.1i)T2 |
| 31 | 1−1.56iT−31T2 |
| 37 | 1+(−2.97+1.71i)T+(18.5−32.0i)T2 |
| 41 | 1+(2.21−1.28i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.219+0.379i)T+(−21.5−37.2i)T2 |
| 47 | 1+8.24iT−47T2 |
| 53 | 1−11.6T+53T2 |
| 59 | 1+(−9.63−5.56i)T+(29.5+51.0i)T2 |
| 61 | 1+(6.06−10.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.379−0.219i)T+(33.5−58.0i)T2 |
| 71 | 1+(−12.1−7i)T+(35.5+61.4i)T2 |
| 73 | 1+1.87iT−73T2 |
| 79 | 1−9.56T+79T2 |
| 83 | 1−9.12iT−83T2 |
| 89 | 1+(−11.3+6.56i)T+(44.5−77.0i)T2 |
| 97 | 1+(3.84+2.21i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81774852979569924506364770592, −9.988820380433400401719544755728, −8.815254266720033840451595568797, −8.447419428593932565464517554435, −7.48581874907980893937014822043, −6.85273883288309229155922255746, −5.59192438597954214102621499995, −5.00183407881278575081353542156, −2.31582799341852914681894039369, −1.08197688517649470736827724740,
0.903118071279828179056018451984, 2.36259700712080783233910407137, 3.67878274951395642826261104006, 4.90590418366153579172877211429, 6.49422558333374625063223148021, 7.73446155305829222216194821087, 8.194637586558895335113505887886, 9.156400396442700653367677245402, 10.19492366505295259586542301142, 10.65829342016888750166436349439