L(s) = 1 | + (1.07 + 0.623i)2-s + (−0.5 + 0.866i)3-s + (−0.222 − 0.385i)4-s + 2.80i·5-s + (−1.07 + 0.623i)6-s + (−4.15 + 2.40i)7-s − 3.04i·8-s + (−0.499 − 0.866i)9-s + (−1.74 + 3.02i)10-s + (−1.27 − 0.733i)11-s + 0.445·12-s − 5.98·14-s + (−2.42 − 1.40i)15-s + (1.45 − 2.52i)16-s + (−1.22 − 2.11i)17-s − 1.24i·18-s + ⋯ |
L(s) = 1 | + (0.763 + 0.440i)2-s + (−0.288 + 0.499i)3-s + (−0.111 − 0.192i)4-s + 1.25i·5-s + (−0.440 + 0.254i)6-s + (−1.57 + 0.907i)7-s − 1.07i·8-s + (−0.166 − 0.288i)9-s + (−0.552 + 0.956i)10-s + (−0.383 − 0.221i)11-s + 0.128·12-s − 1.60·14-s + (−0.626 − 0.361i)15-s + (0.363 − 0.630i)16-s + (−0.296 − 0.513i)17-s − 0.293i·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.996+0.0841i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.996+0.0841i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.996+0.0841i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(316,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.996+0.0841i)
|
Particular Values
L(1) |
≈ |
0.0341271−0.809995i |
L(21) |
≈ |
0.0341271−0.809995i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(−1.07−0.623i)T+(1+1.73i)T2 |
| 5 | 1−2.80iT−5T2 |
| 7 | 1+(4.15−2.40i)T+(3.5−6.06i)T2 |
| 11 | 1+(1.27+0.733i)T+(5.5+9.52i)T2 |
| 17 | 1+(1.22+2.11i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.20−1.27i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.75−3.04i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.925−1.60i)T+(−14.5−25.1i)T2 |
| 31 | 1−7.63iT−31T2 |
| 37 | 1+(−3.94−2.27i)T+(18.5+32.0i)T2 |
| 41 | 1+(−1.07−0.623i)T+(20.5+35.5i)T2 |
| 43 | 1+(−1.19−2.06i)T+(−21.5+37.2i)T2 |
| 47 | 1−12.8iT−47T2 |
| 53 | 1+8.85T+53T2 |
| 59 | 1+(−1.88+1.08i)T+(29.5−51.0i)T2 |
| 61 | 1+(−3.91−6.78i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.10+1.79i)T+(33.5+58.0i)T2 |
| 71 | 1+(−7.65+4.41i)T+(35.5−61.4i)T2 |
| 73 | 1+7.69iT−73T2 |
| 79 | 1+4.02T+79T2 |
| 83 | 1−0.652iT−83T2 |
| 89 | 1+(5.45+3.14i)T+(44.5+77.0i)T2 |
| 97 | 1+(−8.68+5.01i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28681881026712450336213328027, −10.36799811216535513792756046320, −9.752298723013442265836713988262, −8.972036189036442456646302633904, −7.31812354288205105141540348057, −6.30663280108642489957909219143, −6.07136252398558104498640416294, −4.89482941618729772251283644567, −3.53272781393754365451363220863, −2.85119940877162239821246398307,
0.37034449921119987946255438498, 2.33599960684082878512451041543, 3.77056661561352096860819919455, 4.49168599406759350860458093938, 5.63195061049339482550334605027, 6.60817563018595204628830174620, 7.75623168263010866564369160035, 8.641558596714122362357219655233, 9.620806532350325489799469085561, 10.59729869552078908318986216066