L(s) = 1 | + (1.07 + 0.623i)2-s + (−0.5 + 0.866i)3-s + (−0.222 − 0.385i)4-s + 2.80i·5-s + (−1.07 + 0.623i)6-s + (−4.15 + 2.40i)7-s − 3.04i·8-s + (−0.499 − 0.866i)9-s + (−1.74 + 3.02i)10-s + (−1.27 − 0.733i)11-s + 0.445·12-s − 5.98·14-s + (−2.42 − 1.40i)15-s + (1.45 − 2.52i)16-s + (−1.22 − 2.11i)17-s − 1.24i·18-s + ⋯ |
L(s) = 1 | + (0.763 + 0.440i)2-s + (−0.288 + 0.499i)3-s + (−0.111 − 0.192i)4-s + 1.25i·5-s + (−0.440 + 0.254i)6-s + (−1.57 + 0.907i)7-s − 1.07i·8-s + (−0.166 − 0.288i)9-s + (−0.552 + 0.956i)10-s + (−0.383 − 0.221i)11-s + 0.128·12-s − 1.60·14-s + (−0.626 − 0.361i)15-s + (0.363 − 0.630i)16-s + (−0.296 − 0.513i)17-s − 0.293i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 + 0.0841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 + 0.0841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0341271 - 0.809995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0341271 - 0.809995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.07 - 0.623i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 2.80iT - 5T^{2} \) |
| 7 | \( 1 + (4.15 - 2.40i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.27 + 0.733i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.22 + 2.11i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.20 - 1.27i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.75 - 3.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.925 - 1.60i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 7.63iT - 31T^{2} \) |
| 37 | \( 1 + (-3.94 - 2.27i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.07 - 0.623i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.19 - 2.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.8iT - 47T^{2} \) |
| 53 | \( 1 + 8.85T + 53T^{2} \) |
| 59 | \( 1 + (-1.88 + 1.08i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.91 - 6.78i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.10 + 1.79i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.65 + 4.41i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7.69iT - 73T^{2} \) |
| 79 | \( 1 + 4.02T + 79T^{2} \) |
| 83 | \( 1 - 0.652iT - 83T^{2} \) |
| 89 | \( 1 + (5.45 + 3.14i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.68 + 5.01i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28681881026712450336213328027, −10.36799811216535513792756046320, −9.752298723013442265836713988262, −8.972036189036442456646302633904, −7.31812354288205105141540348057, −6.30663280108642489957909219143, −6.07136252398558104498640416294, −4.89482941618729772251283644567, −3.53272781393754365451363220863, −2.85119940877162239821246398307,
0.37034449921119987946255438498, 2.33599960684082878512451041543, 3.77056661561352096860819919455, 4.49168599406759350860458093938, 5.63195061049339482550334605027, 6.60817563018595204628830174620, 7.75623168263010866564369160035, 8.641558596714122362357219655233, 9.620806532350325489799469085561, 10.59729869552078908318986216066