L(s) = 1 | + (−1.77 + 1.02i)2-s + (0.5 + 0.866i)3-s + (1.09 − 1.90i)4-s + 3.35i·5-s + (−1.77 − 1.02i)6-s + (1.94 + 1.12i)7-s + 0.405i·8-s + (−0.499 + 0.866i)9-s + (−3.43 − 5.95i)10-s + (−4.27 + 2.46i)11-s + 2.19·12-s − 4.60·14-s + (−2.90 + 1.67i)15-s + (1.78 + 3.08i)16-s + (0.455 − 0.789i)17-s − 2.04i·18-s + ⋯ |
L(s) = 1 | + (−1.25 + 0.724i)2-s + (0.288 + 0.499i)3-s + (0.549 − 0.951i)4-s + 1.50i·5-s + (−0.724 − 0.418i)6-s + (0.735 + 0.424i)7-s + 0.143i·8-s + (−0.166 + 0.288i)9-s + (−1.08 − 1.88i)10-s + (−1.28 + 0.744i)11-s + 0.634·12-s − 1.23·14-s + (−0.750 + 0.433i)15-s + (0.445 + 0.771i)16-s + (0.110 − 0.191i)17-s − 0.482i·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.944+0.327i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.944+0.327i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.944+0.327i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.944+0.327i)
|
Particular Values
L(1) |
≈ |
0.114952−0.681747i |
L(21) |
≈ |
0.114952−0.681747i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(1.77−1.02i)T+(1−1.73i)T2 |
| 5 | 1−3.35iT−5T2 |
| 7 | 1+(−1.94−1.12i)T+(3.5+6.06i)T2 |
| 11 | 1+(4.27−2.46i)T+(5.5−9.52i)T2 |
| 17 | 1+(−0.455+0.789i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.29−1.90i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.01−1.75i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.96−3.41i)T+(−14.5+25.1i)T2 |
| 31 | 1+8.82iT−31T2 |
| 37 | 1+(7.62−4.40i)T+(18.5−32.0i)T2 |
| 41 | 1+(−6.00+3.46i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.14−1.97i)T+(−21.5−37.2i)T2 |
| 47 | 1+3.80iT−47T2 |
| 53 | 1−0.542T+53T2 |
| 59 | 1+(4.08+2.35i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.83−3.18i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.31−0.760i)T+(33.5−58.0i)T2 |
| 71 | 1+(2.05+1.18i)T+(35.5+61.4i)T2 |
| 73 | 1+7.41iT−73T2 |
| 79 | 1+3.74T+79T2 |
| 83 | 1−2.30iT−83T2 |
| 89 | 1+(−8.71+5.02i)T+(44.5−77.0i)T2 |
| 97 | 1+(−13.9−8.06i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89848054492272241118139620295, −10.27928292061870484997570873945, −9.696228988541895797044014778544, −8.646724201429354170525290449164, −7.63428222962658026842625426826, −7.38551782863934856907464156999, −6.13685833940453668644980781511, −5.03157317547601195081505123986, −3.39257626340778997560335807953, −2.16748650816633686982198396665,
0.61778297584089204469821026525, 1.58961213543626588221267076631, 2.96641589143885579295620926725, 4.73734372272029192425151700777, 5.56192139015211603365997862946, 7.37274206208676278693255798461, 8.140869535350351505225197968980, 8.591115265999338478399146728125, 9.353219369904167319192675457828, 10.42731170274068395992734656646