L(s) = 1 | + (−1.45 − 0.389i)2-s + (−1.60 − 0.650i)3-s + (0.232 + 0.133i)4-s + (1.06 − 1.06i)5-s + (2.08 + 1.57i)6-s + (−0.366 − 1.36i)7-s + (1.84 + 1.84i)8-s + (2.15 + 2.08i)9-s + (−1.96 + 1.13i)10-s + (−1.06 + 3.97i)11-s + (−0.285 − 0.366i)12-s + 2.12i·14-s + (−2.40 + 1.01i)15-s + (−2.23 − 3.86i)16-s + (−2.51 + 4.36i)17-s + (−2.31 − 3.87i)18-s + ⋯ |
L(s) = 1 | + (−1.02 − 0.275i)2-s + (−0.926 − 0.375i)3-s + (0.116 + 0.0669i)4-s + (0.476 − 0.476i)5-s + (0.849 + 0.641i)6-s + (−0.138 − 0.516i)7-s + (0.652 + 0.652i)8-s + (0.717 + 0.696i)9-s + (−0.621 + 0.358i)10-s + (−0.321 + 1.19i)11-s + (−0.0823 − 0.105i)12-s + 0.569i·14-s + (−0.620 + 0.262i)15-s + (−0.558 − 0.966i)16-s + (−0.611 + 1.05i)17-s + (−0.546 − 0.913i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.561303 - 0.116953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.561303 - 0.116953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.60 + 0.650i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.45 + 0.389i)T + (1.73 + i)T^{2} \) |
| 5 | \( 1 + (-1.06 + 1.06i)T - 5iT^{2} \) |
| 7 | \( 1 + (0.366 + 1.36i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.06 - 3.97i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.51 - 4.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.73 + i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.20 + 3.58i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.46 - 2.46i)T + 31iT^{2} \) |
| 37 | \( 1 + (-5.23 - 1.40i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.42 - 1.45i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.90 - 1.09i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.25 + 4.25i)T + 47iT^{2} \) |
| 53 | \( 1 - 0.779iT - 53T^{2} \) |
| 59 | \( 1 + (2.90 - 0.779i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.53 + 5.73i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.779 + 2.90i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.901 + 0.901i)T - 73iT^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + (-2.90 + 2.90i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.41 - 9.01i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (1.63 - 0.437i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62083182233852951364151609303, −10.01275702852515209963199480804, −9.349035895468912097547800320848, −8.155841564941618601880883036524, −7.37953200151122792446333508474, −6.36801986372368586872849914739, −5.15686631381056376594741499013, −4.43171567307234226472407754072, −2.09096545732883971089114848175, −0.983634087168849504202564718852,
0.75728726497467023247403713233, 2.88517853406774644525367362005, 4.40809699269477077122043360799, 5.60406148843847821954800400757, 6.40890587083136616057635038400, 7.32929989157006025081557375185, 8.462572128343446032688050737120, 9.323318220253235222340579629436, 9.973059537417069492220687684941, 10.79223158374223657960057829009