L(s) = 1 | + (−1.45 − 0.389i)2-s + (−1.60 − 0.650i)3-s + (0.232 + 0.133i)4-s + (1.06 − 1.06i)5-s + (2.08 + 1.57i)6-s + (−0.366 − 1.36i)7-s + (1.84 + 1.84i)8-s + (2.15 + 2.08i)9-s + (−1.96 + 1.13i)10-s + (−1.06 + 3.97i)11-s + (−0.285 − 0.366i)12-s + 2.12i·14-s + (−2.40 + 1.01i)15-s + (−2.23 − 3.86i)16-s + (−2.51 + 4.36i)17-s + (−2.31 − 3.87i)18-s + ⋯ |
L(s) = 1 | + (−1.02 − 0.275i)2-s + (−0.926 − 0.375i)3-s + (0.116 + 0.0669i)4-s + (0.476 − 0.476i)5-s + (0.849 + 0.641i)6-s + (−0.138 − 0.516i)7-s + (0.652 + 0.652i)8-s + (0.717 + 0.696i)9-s + (−0.621 + 0.358i)10-s + (−0.321 + 1.19i)11-s + (−0.0823 − 0.105i)12-s + 0.569i·14-s + (−0.620 + 0.262i)15-s + (−0.558 − 0.966i)16-s + (−0.611 + 1.05i)17-s + (−0.546 − 0.913i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.916+0.399i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.916+0.399i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.916+0.399i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.916+0.399i)
|
Particular Values
L(1) |
≈ |
0.561303−0.116953i |
L(21) |
≈ |
0.561303−0.116953i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.60+0.650i)T |
| 13 | 1 |
good | 2 | 1+(1.45+0.389i)T+(1.73+i)T2 |
| 5 | 1+(−1.06+1.06i)T−5iT2 |
| 7 | 1+(0.366+1.36i)T+(−6.06+3.5i)T2 |
| 11 | 1+(1.06−3.97i)T+(−9.52−5.5i)T2 |
| 17 | 1+(2.51−4.36i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.73+i)T+(16.4−9.5i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(−6.20+3.58i)T+(14.5−25.1i)T2 |
| 31 | 1+(−2.46−2.46i)T+31iT2 |
| 37 | 1+(−5.23−1.40i)T+(32.0+18.5i)T2 |
| 41 | 1+(−5.42−1.45i)T+(35.5+20.5i)T2 |
| 43 | 1+(−1.90−1.09i)T+(21.5+37.2i)T2 |
| 47 | 1+(4.25+4.25i)T+47iT2 |
| 53 | 1−0.779iT−53T2 |
| 59 | 1+(2.90−0.779i)T+(51.0−29.5i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.53+5.73i)T+(−58.0−33.5i)T2 |
| 71 | 1+(0.779+2.90i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.901+0.901i)T−73iT2 |
| 79 | 1−2T+79T2 |
| 83 | 1+(−2.90+2.90i)T−83iT2 |
| 89 | 1+(2.41−9.01i)T+(−77.0−44.5i)T2 |
| 97 | 1+(1.63−0.437i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62083182233852951364151609303, −10.01275702852515209963199480804, −9.349035895468912097547800320848, −8.155841564941618601880883036524, −7.37953200151122792446333508474, −6.36801986372368586872849914739, −5.15686631381056376594741499013, −4.43171567307234226472407754072, −2.09096545732883971089114848175, −0.983634087168849504202564718852,
0.75728726497467023247403713233, 2.88517853406774644525367362005, 4.40809699269477077122043360799, 5.60406148843847821954800400757, 6.40890587083136616057635038400, 7.32929989157006025081557375185, 8.462572128343446032688050737120, 9.323318220253235222340579629436, 9.973059537417069492220687684941, 10.79223158374223657960057829009