L(s) = 1 | + (0.619 + 2.31i)2-s + (0.866 − 1.5i)3-s + (−3.23 + 1.86i)4-s + (1.23 − 1.23i)5-s + (4.00 + 1.07i)6-s + (−2.93 − 2.93i)8-s + (−1.5 − 2.59i)9-s + (3.63 + 2.09i)10-s + (6.31 − 1.69i)11-s + 6.46i·12-s + (−0.785 − 2.93i)15-s + (1.23 − 2.13i)16-s + (5.07 − 5.07i)18-s + (−1.69 + 6.31i)20-s + (7.83 + 13.5i)22-s + ⋯ |
L(s) = 1 | + (0.438 + 1.63i)2-s + (0.499 − 0.866i)3-s + (−1.61 + 0.933i)4-s + (0.554 − 0.554i)5-s + (1.63 + 0.438i)6-s + (−1.03 − 1.03i)8-s + (−0.5 − 0.866i)9-s + (1.14 + 0.663i)10-s + (1.90 − 0.510i)11-s + 1.86i·12-s + (−0.202 − 0.757i)15-s + (0.308 − 0.533i)16-s + (1.19 − 1.19i)18-s + (−0.378 + 1.41i)20-s + (1.66 + 2.89i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.533 - 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.533 - 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.94765 + 1.07488i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.94765 + 1.07488i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.619 - 2.31i)T + (-1.73 + i)T^{2} \) |
| 5 | \( 1 + (-1.23 + 1.23i)T - 5iT^{2} \) |
| 7 | \( 1 + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-6.31 + 1.69i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 31iT^{2} \) |
| 37 | \( 1 + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.02 - 7.55i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (3.46 - 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.10 - 7.10i)T + 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-0.121 + 0.453i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (6.92 + 12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (15.5 + 4.17i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 + (-8.91 + 8.91i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.17 - 1.11i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35287882473406867547404732002, −9.450604904442609960410433291819, −8.996296957172584094836810357017, −8.194930060343153048645136338328, −7.26396410043501183134563452619, −6.37152749939267286425864190600, −5.93736053160599651970331953924, −4.63551374383456508573874680378, −3.46883369951088156917398547757, −1.43735324962412166409103779611,
1.69938318644832911656625623526, 2.76756259704859255798247468964, 3.83117910821008392603431391658, 4.45430129627352214445097803791, 5.75121170600826549695010430161, 7.04774918222428956665985648111, 8.747841097633110119903713886069, 9.357224695980054375459852789892, 10.09185580617744469236840519063, 10.66675318433464831092975500659