L(s) = 1 | + (0.619 + 2.31i)2-s + (0.866 − 1.5i)3-s + (−3.23 + 1.86i)4-s + (1.23 − 1.23i)5-s + (4.00 + 1.07i)6-s + (−2.93 − 2.93i)8-s + (−1.5 − 2.59i)9-s + (3.63 + 2.09i)10-s + (6.31 − 1.69i)11-s + 6.46i·12-s + (−0.785 − 2.93i)15-s + (1.23 − 2.13i)16-s + (5.07 − 5.07i)18-s + (−1.69 + 6.31i)20-s + (7.83 + 13.5i)22-s + ⋯ |
L(s) = 1 | + (0.438 + 1.63i)2-s + (0.499 − 0.866i)3-s + (−1.61 + 0.933i)4-s + (0.554 − 0.554i)5-s + (1.63 + 0.438i)6-s + (−1.03 − 1.03i)8-s + (−0.5 − 0.866i)9-s + (1.14 + 0.663i)10-s + (1.90 − 0.510i)11-s + 1.86i·12-s + (−0.202 − 0.757i)15-s + (0.308 − 0.533i)16-s + (1.19 − 1.19i)18-s + (−0.378 + 1.41i)20-s + (1.66 + 2.89i)22-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.533−0.846i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.533−0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.533−0.846i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(488,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.533−0.846i)
|
Particular Values
L(1) |
≈ |
1.94765+1.07488i |
L(21) |
≈ |
1.94765+1.07488i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866+1.5i)T |
| 13 | 1 |
good | 2 | 1+(−0.619−2.31i)T+(−1.73+i)T2 |
| 5 | 1+(−1.23+1.23i)T−5iT2 |
| 7 | 1+(6.06+3.5i)T2 |
| 11 | 1+(−6.31+1.69i)T+(9.52−5.5i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−16.4−9.5i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(14.5+25.1i)T2 |
| 31 | 1+31iT2 |
| 37 | 1+(−32.0+18.5i)T2 |
| 41 | 1+(−2.02−7.55i)T+(−35.5+20.5i)T2 |
| 43 | 1+(3.46−2i)T+(21.5−37.2i)T2 |
| 47 | 1+(−7.10−7.10i)T+47iT2 |
| 53 | 1−53T2 |
| 59 | 1+(−0.121+0.453i)T+(−51.0−29.5i)T2 |
| 61 | 1+(6.92+12i)T+(−30.5+52.8i)T2 |
| 67 | 1+(58.0−33.5i)T2 |
| 71 | 1+(15.5+4.17i)T+(61.4+35.5i)T2 |
| 73 | 1−73iT2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+(−8.91+8.91i)T−83iT2 |
| 89 | 1+(4.17−1.11i)T+(77.0−44.5i)T2 |
| 97 | 1+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35287882473406867547404732002, −9.450604904442609960410433291819, −8.996296957172584094836810357017, −8.194930060343153048645136338328, −7.26396410043501183134563452619, −6.37152749939267286425864190600, −5.93736053160599651970331953924, −4.63551374383456508573874680378, −3.46883369951088156917398547757, −1.43735324962412166409103779611,
1.69938318644832911656625623526, 2.76756259704859255798247468964, 3.83117910821008392603431391658, 4.45430129627352214445097803791, 5.75121170600826549695010430161, 7.04774918222428956665985648111, 8.747841097633110119903713886069, 9.357224695980054375459852789892, 10.09185580617744469236840519063, 10.66675318433464831092975500659