L(s) = 1 | + (0.389 + 1.45i)2-s + (−0.866 + 1.5i)3-s + (−0.232 + 0.133i)4-s + (−2.90 + 2.90i)5-s + (−2.51 − 0.675i)6-s + (1.84 + 1.84i)8-s + (−1.5 − 2.59i)9-s + (−5.36 − 3.09i)10-s + (−1.06 + 0.285i)11-s − 0.464i·12-s + (−1.84 − 6.88i)15-s + (−2.23 + 3.86i)16-s + (3.19 − 3.19i)18-s + (0.285 − 1.06i)20-s + (−0.830 − 1.43i)22-s + ⋯ |
L(s) = 1 | + (0.275 + 1.02i)2-s + (−0.499 + 0.866i)3-s + (−0.116 + 0.0669i)4-s + (−1.30 + 1.30i)5-s + (−1.02 − 0.275i)6-s + (0.652 + 0.652i)8-s + (−0.5 − 0.866i)9-s + (−1.69 − 0.979i)10-s + (−0.321 + 0.0860i)11-s − 0.133i·12-s + (−0.476 − 1.77i)15-s + (−0.558 + 0.966i)16-s + (0.752 − 0.752i)18-s + (0.0638 − 0.238i)20-s + (−0.176 − 0.306i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.533 + 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.533 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.407783 - 0.738888i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.407783 - 0.738888i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 1.5i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.389 - 1.45i)T + (-1.73 + i)T^{2} \) |
| 5 | \( 1 + (2.90 - 2.90i)T - 5iT^{2} \) |
| 7 | \( 1 + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.06 - 0.285i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 31iT^{2} \) |
| 37 | \( 1 + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.62 - 9.79i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (3.46 - 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.59 + 6.59i)T + 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (3.97 - 14.8i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-6.92 - 12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (4.75 + 1.27i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + (-9.29 + 9.29i)T - 83iT^{2} \) |
| 89 | \( 1 + (17.7 - 4.75i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38063440062360944667527971963, −10.69920591405193129139486670476, −9.990077169939600508914228775188, −8.495199275477907060240920566752, −7.66644114918838644346555336856, −6.82976325543520716425656325428, −6.12252217093397613492932112369, −4.95338289364915345740152474156, −4.03409763126126872004764144372, −2.91522817695959817203080778591,
0.48634814710896855157750741463, 1.76113247808402010973505500028, 3.30848896402607797933742085126, 4.44691056243219158394704734435, 5.28906367053479571257649717561, 6.78304921080310488546844998512, 7.75240836376866608702198848389, 8.313021387241324470700621438967, 9.541156529431912016578264630718, 10.91173815584280209781114506104