L(s) = 1 | + (0.389 + 1.45i)2-s + (−0.866 + 1.5i)3-s + (−0.232 + 0.133i)4-s + (−2.90 + 2.90i)5-s + (−2.51 − 0.675i)6-s + (1.84 + 1.84i)8-s + (−1.5 − 2.59i)9-s + (−5.36 − 3.09i)10-s + (−1.06 + 0.285i)11-s − 0.464i·12-s + (−1.84 − 6.88i)15-s + (−2.23 + 3.86i)16-s + (3.19 − 3.19i)18-s + (0.285 − 1.06i)20-s + (−0.830 − 1.43i)22-s + ⋯ |
L(s) = 1 | + (0.275 + 1.02i)2-s + (−0.499 + 0.866i)3-s + (−0.116 + 0.0669i)4-s + (−1.30 + 1.30i)5-s + (−1.02 − 0.275i)6-s + (0.652 + 0.652i)8-s + (−0.5 − 0.866i)9-s + (−1.69 − 0.979i)10-s + (−0.321 + 0.0860i)11-s − 0.133i·12-s + (−0.476 − 1.77i)15-s + (−0.558 + 0.966i)16-s + (0.752 − 0.752i)18-s + (0.0638 − 0.238i)20-s + (−0.176 − 0.306i)22-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.533+0.846i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.533+0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.533+0.846i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(488,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.533+0.846i)
|
Particular Values
L(1) |
≈ |
0.407783−0.738888i |
L(21) |
≈ |
0.407783−0.738888i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.866−1.5i)T |
| 13 | 1 |
good | 2 | 1+(−0.389−1.45i)T+(−1.73+i)T2 |
| 5 | 1+(2.90−2.90i)T−5iT2 |
| 7 | 1+(6.06+3.5i)T2 |
| 11 | 1+(1.06−0.285i)T+(9.52−5.5i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−16.4−9.5i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(14.5+25.1i)T2 |
| 31 | 1+31iT2 |
| 37 | 1+(−32.0+18.5i)T2 |
| 41 | 1+(−2.62−9.79i)T+(−35.5+20.5i)T2 |
| 43 | 1+(3.46−2i)T+(21.5−37.2i)T2 |
| 47 | 1+(6.59+6.59i)T+47iT2 |
| 53 | 1−53T2 |
| 59 | 1+(3.97−14.8i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−6.92−12i)T+(−30.5+52.8i)T2 |
| 67 | 1+(58.0−33.5i)T2 |
| 71 | 1+(4.75+1.27i)T+(61.4+35.5i)T2 |
| 73 | 1−73iT2 |
| 79 | 1−10.3T+79T2 |
| 83 | 1+(−9.29+9.29i)T−83iT2 |
| 89 | 1+(17.7−4.75i)T+(77.0−44.5i)T2 |
| 97 | 1+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38063440062360944667527971963, −10.69920591405193129139486670476, −9.990077169939600508914228775188, −8.495199275477907060240920566752, −7.66644114918838644346555336856, −6.82976325543520716425656325428, −6.12252217093397613492932112369, −4.95338289364915345740152474156, −4.03409763126126872004764144372, −2.91522817695959817203080778591,
0.48634814710896855157750741463, 1.76113247808402010973505500028, 3.30848896402607797933742085126, 4.44691056243219158394704734435, 5.28906367053479571257649717561, 6.78304921080310488546844998512, 7.75240836376866608702198848389, 8.313021387241324470700621438967, 9.541156529431912016578264630718, 10.91173815584280209781114506104