L(s) = 1 | + (−0.258 − 0.965i)2-s + (1.72 − 0.158i)3-s + (0.866 − 0.5i)4-s + (1.41 − 1.41i)5-s + (−0.599 − 1.62i)6-s + (1.36 + 0.366i)7-s + (−2.12 − 2.12i)8-s + (2.94 − 0.548i)9-s + (−1.73 − 1.00i)10-s + (−3.86 + 1.03i)11-s + (1.41 − i)12-s − 1.41i·14-s + (2.21 − 2.66i)15-s + (−0.500 + 0.866i)16-s + (−1.29 − 2.70i)18-s + (−0.366 + 1.36i)19-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (0.995 − 0.0917i)3-s + (0.433 − 0.250i)4-s + (0.632 − 0.632i)5-s + (−0.244 − 0.663i)6-s + (0.516 + 0.138i)7-s + (−0.749 − 0.749i)8-s + (0.983 − 0.182i)9-s + (−0.547 − 0.316i)10-s + (−1.16 + 0.312i)11-s + (0.408 − 0.288i)12-s − 0.377i·14-s + (0.571 − 0.687i)15-s + (−0.125 + 0.216i)16-s + (−0.304 − 0.638i)18-s + (−0.0839 + 0.313i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0532 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0532 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60989 - 1.52634i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60989 - 1.52634i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.72 + 0.158i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.258 + 0.965i)T + (-1.73 + i)T^{2} \) |
| 5 | \( 1 + (-1.41 + 1.41i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.36 - 0.366i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (3.86 - 1.03i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.366 - 1.36i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (4.24 - 7.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.44 + 1.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5 - 5i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.366 + 1.36i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.517 - 1.93i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.19 + 3i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.82 - 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (-1.03 + 3.86i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.83 - 1.83i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-3.86 - 1.03i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (1 - i)T - 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 + 5.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (-13.5 + 3.62i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (2.56 - 9.56i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47430852111647766675393901135, −9.826692906114303899631515904808, −9.146290087465620764100946723981, −8.102522427456711743024612237124, −7.32431470722043487060075339609, −5.96578220092807610754031865352, −4.95313683619028262218183016276, −3.48869608189476946922834410382, −2.28911434558136776584825524646, −1.50976118927658857287571405903,
2.26801293244161470002201143322, 2.85600053977117600025027052571, 4.43283842837127838060340654687, 5.80886917038310738518441044627, 6.69922083817348296200127550733, 7.70936393567065099160356605023, 8.173643020860633354562811727859, 9.113566964111884196941314064795, 10.31329863521568441326926830896, 10.76772938578693892334634498242