Properties

Label 16-507e8-1.1-c1e8-0-2
Degree $16$
Conductor $4.366\times 10^{21}$
Sign $1$
Analytic cond. $72157.3$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4·7-s + 10·9-s + 16-s − 4·19-s − 16·21-s + 32·27-s − 40·31-s − 4·37-s + 4·48-s + 8·49-s − 16·57-s − 32·61-s − 40·63-s + 20·67-s + 8·73-s − 80·79-s + 89·81-s − 160·93-s − 28·97-s + 8·109-s − 16·111-s − 4·112-s + 127-s + 131-s + 16·133-s + 137-s + ⋯
L(s)  = 1  + 2.30·3-s − 1.51·7-s + 10/3·9-s + 1/4·16-s − 0.917·19-s − 3.49·21-s + 6.15·27-s − 7.18·31-s − 0.657·37-s + 0.577·48-s + 8/7·49-s − 2.11·57-s − 4.09·61-s − 5.03·63-s + 2.44·67-s + 0.936·73-s − 9.00·79-s + 89/9·81-s − 16.5·93-s − 2.84·97-s + 0.766·109-s − 1.51·111-s − 0.377·112-s + 0.0887·127-s + 0.0873·131-s + 1.38·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{8} \cdot 13^{16}\)
Sign: $1$
Analytic conductor: \(72157.3\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{8} \cdot 13^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1568212066\)
\(L(\frac12)\) \(\approx\) \(0.1568212066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
13 \( 1 \)
good2 \( 1 - T^{4} - 15 T^{8} - p^{4} T^{12} + p^{8} T^{16} \)
5 \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2}( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
7 \( ( 1 + 2 T + 2 T^{2} - 24 T^{3} - 73 T^{4} - 24 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
11 \( 1 + 206 T^{4} + 27795 T^{8} + 206 p^{4} T^{12} + p^{8} T^{16} \)
17 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
19 \( ( 1 + 2 T + 2 T^{2} - 72 T^{3} - 433 T^{4} - 72 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
23 \( ( 1 + 26 T^{2} + 147 T^{4} + 26 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 50 T^{2} + 1659 T^{4} + 50 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{4} \)
37 \( ( 1 + 2 T + 2 T^{2} - 144 T^{3} - 1513 T^{4} - 144 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 - 2722 T^{4} + 4583523 T^{8} - 2722 p^{4} T^{12} + p^{8} T^{16} \)
43 \( ( 1 + 50 T^{2} + 651 T^{4} + 50 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 + 1666 T^{4} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{4} \)
59 \( 1 - 3442 T^{4} - 269997 T^{8} - 3442 p^{4} T^{12} + p^{8} T^{16} \)
61 \( ( 1 + 8 T + 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 - 10 T + 50 T^{2} + 840 T^{3} - 8689 T^{4} + 840 p T^{5} + 50 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
71 \( 1 - 5794 T^{4} + 8158755 T^{8} - 5794 p^{4} T^{12} + p^{8} T^{16} \)
73 \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{4} \)
79 \( ( 1 + 10 T + p T^{2} )^{8} \)
83 \( ( 1 - 3374 T^{4} + p^{4} T^{8} )^{2} \)
89 \( 1 + 15518 T^{4} + 178066083 T^{8} + 15518 p^{4} T^{12} + p^{8} T^{16} \)
97 \( ( 1 + 14 T + 98 T^{2} - 1344 T^{3} - 18817 T^{4} - 1344 p T^{5} + 98 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.76189096386381570070946140902, −4.63864725332895118203073143125, −4.44487677358451694820468708561, −4.13653072911740632463002757049, −4.06306649563595096426307907961, −4.06075463510290048440173933567, −3.94772449596502164374740914076, −3.87162640086216596868383671015, −3.46565069730993514588416873934, −3.43083137562711586876908852936, −3.29195401144391934787623422629, −3.12178148521797688312611986393, −3.04927052367034177292258821531, −2.91565235915600801063385555965, −2.80286239047113522615924923616, −2.61488503387479758038166917235, −2.31292254736253142222025339398, −2.02140599346058453468075572188, −2.00562687841878007749009153089, −1.81845394087668786338812573208, −1.51354470790136810273353816060, −1.48453424146428443847951494766, −1.29659564951024181329522911681, −0.62386480223666033888601524920, −0.05535976487160293539049137089, 0.05535976487160293539049137089, 0.62386480223666033888601524920, 1.29659564951024181329522911681, 1.48453424146428443847951494766, 1.51354470790136810273353816060, 1.81845394087668786338812573208, 2.00562687841878007749009153089, 2.02140599346058453468075572188, 2.31292254736253142222025339398, 2.61488503387479758038166917235, 2.80286239047113522615924923616, 2.91565235915600801063385555965, 3.04927052367034177292258821531, 3.12178148521797688312611986393, 3.29195401144391934787623422629, 3.43083137562711586876908852936, 3.46565069730993514588416873934, 3.87162640086216596868383671015, 3.94772449596502164374740914076, 4.06075463510290048440173933567, 4.06306649563595096426307907961, 4.13653072911740632463002757049, 4.44487677358451694820468708561, 4.63864725332895118203073143125, 4.76189096386381570070946140902

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.