L(s) = 1 | + (0.965 − 0.258i)2-s + (1.72 − 0.158i)3-s + (−0.866 + 0.5i)4-s + (1.41 + 1.41i)5-s + (1.62 − 0.599i)6-s + (0.366 − 1.36i)7-s + (−2.12 + 2.12i)8-s + (2.94 − 0.548i)9-s + (1.73 + 1.00i)10-s + (1.03 + 3.86i)11-s + (−1.41 + i)12-s − 1.41i·14-s + (2.66 + 2.21i)15-s + (−0.500 + 0.866i)16-s + (2.70 − 1.29i)18-s + (−1.36 − 0.366i)19-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.995 − 0.0917i)3-s + (−0.433 + 0.250i)4-s + (0.632 + 0.632i)5-s + (0.663 − 0.244i)6-s + (0.138 − 0.516i)7-s + (−0.749 + 0.749i)8-s + (0.983 − 0.182i)9-s + (0.547 + 0.316i)10-s + (0.312 + 1.16i)11-s + (−0.408 + 0.288i)12-s − 0.377i·14-s + (0.687 + 0.571i)15-s + (−0.125 + 0.216i)16-s + (0.638 − 0.304i)18-s + (−0.313 − 0.0839i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.63305 + 0.444262i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63305 + 0.444262i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.72 + 0.158i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.965 + 0.258i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-1.41 - 1.41i)T + 5iT^{2} \) |
| 7 | \( 1 + (-0.366 + 1.36i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.03 - 3.86i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.36 + 0.366i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-4.24 + 7.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.44 + 1.41i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5 - 5i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.36 - 0.366i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (1.93 - 0.517i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (5.19 - 3i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.82 + 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (3.86 + 1.03i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.83 + 6.83i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.03 - 3.86i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 - 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.62 + 13.5i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (9.56 + 2.56i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83368130394384487406292892081, −10.02306641398152984068868578084, −9.181306871112426471185629103552, −8.363366927644870206672710612715, −7.25068256747469242230099165881, −6.49570382668565400055824815438, −4.93189139056625842958961761898, −4.13653072911740632463002757049, −3.04927052367034177292258821531, −2.02140599346058453468075572188,
1.48453424146428443847951494766, 3.12178148521797688312611986393, 4.06075463510290048440173933567, 5.30021512423940767420754584337, 5.83783897561031449915478876226, 7.20480140386322465647028976534, 8.493628987461634775393539960681, 9.120851529853282065557123181277, 9.550438281994422834297846268667, 10.79224929667812405353984417176