L(s) = 1 | + (0.965 − 0.258i)2-s + (1.72 − 0.158i)3-s + (−0.866 + 0.5i)4-s + (1.41 + 1.41i)5-s + (1.62 − 0.599i)6-s + (0.366 − 1.36i)7-s + (−2.12 + 2.12i)8-s + (2.94 − 0.548i)9-s + (1.73 + 1.00i)10-s + (1.03 + 3.86i)11-s + (−1.41 + i)12-s − 1.41i·14-s + (2.66 + 2.21i)15-s + (−0.500 + 0.866i)16-s + (2.70 − 1.29i)18-s + (−1.36 − 0.366i)19-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.995 − 0.0917i)3-s + (−0.433 + 0.250i)4-s + (0.632 + 0.632i)5-s + (0.663 − 0.244i)6-s + (0.138 − 0.516i)7-s + (−0.749 + 0.749i)8-s + (0.983 − 0.182i)9-s + (0.547 + 0.316i)10-s + (0.312 + 1.16i)11-s + (−0.408 + 0.288i)12-s − 0.377i·14-s + (0.687 + 0.571i)15-s + (−0.125 + 0.216i)16-s + (0.638 − 0.304i)18-s + (−0.313 − 0.0839i)19-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.944−0.328i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.944−0.328i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.944−0.328i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(188,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.944−0.328i)
|
Particular Values
L(1) |
≈ |
2.63305+0.444262i |
L(21) |
≈ |
2.63305+0.444262i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.72+0.158i)T |
| 13 | 1 |
good | 2 | 1+(−0.965+0.258i)T+(1.73−i)T2 |
| 5 | 1+(−1.41−1.41i)T+5iT2 |
| 7 | 1+(−0.366+1.36i)T+(−6.06−3.5i)T2 |
| 11 | 1+(−1.03−3.86i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(1.36+0.366i)T+(16.4+9.5i)T2 |
| 23 | 1+(−4.24+7.34i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.44+1.41i)T+(14.5+25.1i)T2 |
| 31 | 1+(5−5i)T−31iT2 |
| 37 | 1+(1.36−0.366i)T+(32.0−18.5i)T2 |
| 41 | 1+(1.93−0.517i)T+(35.5−20.5i)T2 |
| 43 | 1+(5.19−3i)T+(21.5−37.2i)T2 |
| 47 | 1+(−2.82+2.82i)T−47iT2 |
| 53 | 1+5.65iT−53T2 |
| 59 | 1+(3.86+1.03i)T+(51.0+29.5i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.83+6.83i)T+(−58.0+33.5i)T2 |
| 71 | 1+(1.03−3.86i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−1−i)T+73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−5.65−5.65i)T+83iT2 |
| 89 | 1+(3.62+13.5i)T+(−77.0+44.5i)T2 |
| 97 | 1+(9.56+2.56i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83368130394384487406292892081, −10.02306641398152984068868578084, −9.181306871112426471185629103552, −8.363366927644870206672710612715, −7.25068256747469242230099165881, −6.49570382668565400055824815438, −4.93189139056625842958961761898, −4.13653072911740632463002757049, −3.04927052367034177292258821531, −2.02140599346058453468075572188,
1.48453424146428443847951494766, 3.12178148521797688312611986393, 4.06075463510290048440173933567, 5.30021512423940767420754584337, 5.83783897561031449915478876226, 7.20480140386322465647028976534, 8.493628987461634775393539960681, 9.120851529853282065557123181277, 9.550438281994422834297846268667, 10.79224929667812405353984417176