L(s) = 1 | + (−0.164 − 0.0132i)2-s + (0.845 + 0.534i)3-s + (−1.94 − 0.316i)4-s + (2.22 + 1.96i)5-s + (−0.131 − 0.0989i)6-s + (−0.158 + 0.164i)7-s + (0.635 + 0.156i)8-s + (0.428 + 0.903i)9-s + (−0.338 − 0.352i)10-s + (−2.22 + 4.68i)11-s + (−1.47 − 1.30i)12-s + (−3.60 − 0.160i)13-s + (0.0281 − 0.0249i)14-s + (0.826 + 2.85i)15-s + (3.64 + 1.21i)16-s + (−1.50 + 1.56i)17-s + ⋯ |
L(s) = 1 | + (−0.116 − 0.00936i)2-s + (0.487 + 0.308i)3-s + (−0.973 − 0.158i)4-s + (0.994 + 0.880i)5-s + (−0.0537 − 0.0403i)6-s + (−0.0597 + 0.0621i)7-s + (0.224 + 0.0553i)8-s + (0.142 + 0.301i)9-s + (−0.107 − 0.111i)10-s + (−0.670 + 1.41i)11-s + (−0.426 − 0.377i)12-s + (−0.999 − 0.0443i)13-s + (0.00751 − 0.00665i)14-s + (0.213 + 0.736i)15-s + (0.910 + 0.303i)16-s + (−0.364 + 0.379i)17-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.143−0.989i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.143−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.143−0.989i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.143−0.989i)
|
Particular Values
L(1) |
≈ |
0.827246+0.955433i |
L(21) |
≈ |
0.827246+0.955433i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.845−0.534i)T |
| 13 | 1+(3.60+0.160i)T |
good | 2 | 1+(0.164+0.0132i)T+(1.97+0.320i)T2 |
| 5 | 1+(−2.22−1.96i)T+(0.602+4.96i)T2 |
| 7 | 1+(0.158−0.164i)T+(−0.281−6.99i)T2 |
| 11 | 1+(2.22−4.68i)T+(−6.95−8.52i)T2 |
| 17 | 1+(1.50−1.56i)T+(−0.684−16.9i)T2 |
| 19 | 1+(−2.38+4.13i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.04−1.81i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−5.67−0.458i)T+(28.6+4.65i)T2 |
| 31 | 1+(0.846−6.97i)T+(−30.0−7.41i)T2 |
| 37 | 1+(10.5−4.48i)T+(25.6−26.6i)T2 |
| 41 | 1+(0.450+0.284i)T+(17.5+37.0i)T2 |
| 43 | 1+(−3.19−1.35i)T+(29.7+31.0i)T2 |
| 47 | 1+(−0.481+1.26i)T+(−35.1−31.1i)T2 |
| 53 | 1+(−7.73−1.90i)T+(46.9+24.6i)T2 |
| 59 | 1+(−8.17+2.72i)T+(47.1−35.4i)T2 |
| 61 | 1+(−0.807+2.78i)T+(−51.5−32.6i)T2 |
| 67 | 1+(−14.6+2.37i)T+(63.5−21.2i)T2 |
| 71 | 1+(−0.600+14.8i)T+(−70.7−5.71i)T2 |
| 73 | 1+(4.24+6.14i)T+(−25.8+68.2i)T2 |
| 79 | 1+(−3.43+9.06i)T+(−59.1−52.3i)T2 |
| 83 | 1+(13.0+6.86i)T+(47.1+68.3i)T2 |
| 89 | 1+(−3.64−6.31i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−2.65−13.0i)T+(−89.2+38.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.59436451643592922957550424493, −10.16201608746184419608202456187, −9.535606279861345973466933647521, −8.736129990699720549325032591836, −7.51301294705584200241782937015, −6.71952435022455118375619374419, −5.24032624395498879105324194974, −4.68425820872793806605355807094, −3.12183688976186189509702274200, −2.04266712301366389545408345623,
0.76385840225329433135219204053, 2.45591847638019696347119629287, 3.83961002827845736508677708043, 5.16733375625855659332803919000, 5.69518442523093332759195052691, 7.20628425784043717436542918731, 8.371480024947177746030809503552, 8.721071673501670854347724665281, 9.718214459639571750079933177260, 10.23563400762068755182749286668