L(s) = 1 | + (−0.367 + 2.00i)2-s + (1.27 + 1.16i)3-s + (−2.01 − 0.765i)4-s + (1.15 + 0.0695i)5-s + (−2.81 + 2.13i)6-s + (−2.33 − 1.40i)7-s + (0.166 − 0.275i)8-s + (0.271 + 2.98i)9-s + (−0.562 + 2.28i)10-s + (0.882 + 4.81i)11-s + (−1.68 − 3.33i)12-s + (3.44 − 1.06i)13-s + (3.68 − 4.15i)14-s + (1.38 + 1.43i)15-s + (−2.73 − 2.42i)16-s + (−3.64 + 0.897i)17-s + ⋯ |
L(s) = 1 | + (−0.259 + 1.41i)2-s + (0.738 + 0.674i)3-s + (−1.00 − 0.382i)4-s + (0.514 + 0.0311i)5-s + (−1.14 + 0.871i)6-s + (−0.881 − 0.532i)7-s + (0.0588 − 0.0974i)8-s + (0.0904 + 0.995i)9-s + (−0.177 + 0.721i)10-s + (0.266 + 1.45i)11-s + (−0.486 − 0.962i)12-s + (0.955 − 0.296i)13-s + (0.984 − 1.11i)14-s + (0.358 + 0.369i)15-s + (−0.684 − 0.606i)16-s + (−0.883 + 0.217i)17-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.993+0.112i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.993+0.112i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.993+0.112i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.993+0.112i)
|
Particular Values
L(1) |
≈ |
0.0820424−1.45010i |
L(21) |
≈ |
0.0820424−1.45010i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.27−1.16i)T |
| 13 | 1+(−3.44+1.06i)T |
good | 2 | 1+(0.367−2.00i)T+(−1.87−0.709i)T2 |
| 5 | 1+(−1.15−0.0695i)T+(4.96+0.602i)T2 |
| 7 | 1+(2.33+1.40i)T+(3.25+6.19i)T2 |
| 11 | 1+(−0.882−4.81i)T+(−10.2+3.90i)T2 |
| 17 | 1+(3.64−0.897i)T+(15.0−7.90i)T2 |
| 19 | 1+(2.46−2.46i)T−19iT2 |
| 23 | 1+1.42T+23T2 |
| 29 | 1+(−6.36+4.39i)T+(10.2−27.1i)T2 |
| 31 | 1+(−6.30−4.93i)T+(7.41+30.0i)T2 |
| 37 | 1+(−3.95+5.05i)T+(−8.85−35.9i)T2 |
| 41 | 1+(−2.47−7.94i)T+(−33.7+23.2i)T2 |
| 43 | 1+(−5.96−0.724i)T+(41.7+10.2i)T2 |
| 47 | 1+(4.03+1.81i)T+(31.1+35.1i)T2 |
| 53 | 1+(1.80+7.32i)T+(−46.9+24.6i)T2 |
| 59 | 1+(−0.278+4.59i)T+(−58.5−7.11i)T2 |
| 61 | 1+(0.958+0.236i)T+(54.0+28.3i)T2 |
| 67 | 1+(−12.4−5.58i)T+(44.4+50.1i)T2 |
| 71 | 1+(3.79+12.1i)T+(−58.4+40.3i)T2 |
| 73 | 1+(−9.71+1.78i)T+(68.2−25.8i)T2 |
| 79 | 1+(−5.39−14.2i)T+(−59.1+52.3i)T2 |
| 83 | 1+(−16.4−5.12i)T+(68.3+47.1i)T2 |
| 89 | 1+(3.07−3.07i)T−89iT2 |
| 97 | 1+(10.0−0.607i)T+(96.2−11.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01601277605965061333168926774, −9.858993292627180859961419561448, −9.668170687830580952996654447969, −8.492861893677942348462120312762, −7.87705285667254312491472211324, −6.69584077493714586998952006512, −6.20063778061273552422931343204, −4.80925203548957468503024706972, −3.90943568153517329880312993293, −2.32474901237286295332019302614,
0.878051371575740311642408235715, 2.30223836801311582228391659328, 3.04722259831135123962551666601, 4.04314477729290411313002811022, 6.18459144450634821640469577525, 6.46848871090344095520869180716, 8.250888281580424285615276282476, 9.009173768359229350291018405050, 9.394822841089877247664810086992, 10.53031381254114089725677908187