L(s) = 1 | − 4.83i·2-s + 3·3-s − 15.4·4-s + 21.1i·5-s − 14.5i·6-s − 16.2i·7-s + 35.8i·8-s + 9·9-s + 102.·10-s − 30.7i·11-s − 46.2·12-s − 78.7·14-s + 63.5i·15-s + 49.9·16-s − 46.2·17-s − 43.5i·18-s + ⋯ |
L(s) = 1 | − 1.71i·2-s + 0.577·3-s − 1.92·4-s + 1.89i·5-s − 0.987i·6-s − 0.879i·7-s + 1.58i·8-s + 0.333·9-s + 3.24·10-s − 0.842i·11-s − 1.11·12-s − 1.50·14-s + 1.09i·15-s + 0.781·16-s − 0.659·17-s − 0.570i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.691 - 0.722i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.691 - 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7697587876\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7697587876\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 4.83iT - 8T^{2} \) |
| 5 | \( 1 - 21.1iT - 125T^{2} \) |
| 7 | \( 1 + 16.2iT - 343T^{2} \) |
| 11 | \( 1 + 30.7iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 46.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 144. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 8.38T + 1.21e4T^{2} \) |
| 29 | \( 1 + 242.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 87.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 49.6iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 107. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 35.4T + 7.95e4T^{2} \) |
| 47 | \( 1 - 374. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 348.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 679. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 230.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 295. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 329. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 48.9iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 107.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 515. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 984. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 487. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70254443381968895390093615314, −10.13966927119719435330797694597, −9.278336517291027318023402754129, −8.025969065700759238334236012205, −7.14001892148921336226860245051, −5.98115367317070440320982540806, −4.05045527924138206545689739424, −3.52200562011416810422488841754, −2.69857159354379117953208204264, −1.58764120664894426844451116800,
0.21301278575045388790690397303, 2.03969023057303742020992110103, 4.22305865582791278384818715106, 4.92776255175663037163681101670, 5.60566297414986296355898668770, 6.81585644267410678857273426985, 7.79554465618311273911447652719, 8.520391936802824005448954779052, 9.281272496264218589208539930072, 9.408026157993062936895142051829