L(s) = 1 | − 4.83i·2-s + 3·3-s − 15.4·4-s + 21.1i·5-s − 14.5i·6-s − 16.2i·7-s + 35.8i·8-s + 9·9-s + 102.·10-s − 30.7i·11-s − 46.2·12-s − 78.7·14-s + 63.5i·15-s + 49.9·16-s − 46.2·17-s − 43.5i·18-s + ⋯ |
L(s) = 1 | − 1.71i·2-s + 0.577·3-s − 1.92·4-s + 1.89i·5-s − 0.987i·6-s − 0.879i·7-s + 1.58i·8-s + 0.333·9-s + 3.24·10-s − 0.842i·11-s − 1.11·12-s − 1.50·14-s + 1.09i·15-s + 0.781·16-s − 0.659·17-s − 0.570i·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.691−0.722i)Λ(4−s)
Λ(s)=(=(507s/2ΓC(s+3/2)L(s)(0.691−0.722i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.691−0.722i
|
Analytic conductor: |
29.9139 |
Root analytic conductor: |
5.46936 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :3/2), 0.691−0.722i)
|
Particular Values
L(2) |
≈ |
0.7697587876 |
L(21) |
≈ |
0.7697587876 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 13 | 1 |
good | 2 | 1+4.83iT−8T2 |
| 5 | 1−21.1iT−125T2 |
| 7 | 1+16.2iT−343T2 |
| 11 | 1+30.7iT−1.33e3T2 |
| 17 | 1+46.2T+4.91e3T2 |
| 19 | 1−144.iT−6.85e3T2 |
| 23 | 1+8.38T+1.21e4T2 |
| 29 | 1+242.T+2.43e4T2 |
| 31 | 1−87.9iT−2.97e4T2 |
| 37 | 1−49.6iT−5.06e4T2 |
| 41 | 1+107.iT−6.89e4T2 |
| 43 | 1−35.4T+7.95e4T2 |
| 47 | 1−374.iT−1.03e5T2 |
| 53 | 1+348.T+1.48e5T2 |
| 59 | 1−679.iT−2.05e5T2 |
| 61 | 1+230.T+2.26e5T2 |
| 67 | 1−295.iT−3.00e5T2 |
| 71 | 1+329.iT−3.57e5T2 |
| 73 | 1−48.9iT−3.89e5T2 |
| 79 | 1+107.T+4.93e5T2 |
| 83 | 1+515.iT−5.71e5T2 |
| 89 | 1−984.iT−7.04e5T2 |
| 97 | 1+487.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70254443381968895390093615314, −10.13966927119719435330797694597, −9.278336517291027318023402754129, −8.025969065700759238334236012205, −7.14001892148921336226860245051, −5.98115367317070440320982540806, −4.05045527924138206545689739424, −3.52200562011416810422488841754, −2.69857159354379117953208204264, −1.58764120664894426844451116800,
0.21301278575045388790690397303, 2.03969023057303742020992110103, 4.22305865582791278384818715106, 4.92776255175663037163681101670, 5.60566297414986296355898668770, 6.81585644267410678857273426985, 7.79554465618311273911447652719, 8.520391936802824005448954779052, 9.281272496264218589208539930072, 9.408026157993062936895142051829