L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.58 + 0.705i)3-s − 1.00i·4-s + (−2.23 + 0.0974i)5-s + (0.619 − 1.61i)6-s + (−3.25 − 3.25i)7-s + (0.707 + 0.707i)8-s + (2.00 − 2.23i)9-s + (1.51 − 1.64i)10-s + 3.90i·11-s + (0.705 + 1.58i)12-s + (2.89 − 2.89i)13-s + 4.60·14-s + (3.46 − 1.73i)15-s − 1.00·16-s + (−0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.913 + 0.407i)3-s − 0.500i·4-s + (−0.999 + 0.0435i)5-s + (0.252 − 0.660i)6-s + (−1.23 − 1.23i)7-s + (0.250 + 0.250i)8-s + (0.668 − 0.744i)9-s + (0.477 − 0.521i)10-s + 1.17i·11-s + (0.203 + 0.456i)12-s + (0.802 − 0.802i)13-s + 1.23·14-s + (0.894 − 0.446i)15-s − 0.250·16-s + (−0.171 + 0.171i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.526 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.526 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.430624 + 0.239969i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.430624 + 0.239969i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (1.58 - 0.705i)T \) |
| 5 | \( 1 + (2.23 - 0.0974i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (3.25 + 3.25i)T + 7iT^{2} \) |
| 11 | \( 1 - 3.90iT - 11T^{2} \) |
| 13 | \( 1 + (-2.89 + 2.89i)T - 13iT^{2} \) |
| 19 | \( 1 - 5.28iT - 19T^{2} \) |
| 23 | \( 1 + (-1.08 - 1.08i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.81T + 29T^{2} \) |
| 31 | \( 1 - 7.47T + 31T^{2} \) |
| 37 | \( 1 + (3.81 + 3.81i)T + 37iT^{2} \) |
| 41 | \( 1 + 3.03iT - 41T^{2} \) |
| 43 | \( 1 + (3.66 - 3.66i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.79 + 3.79i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.80 - 8.80i)T + 53iT^{2} \) |
| 59 | \( 1 - 8.47T + 59T^{2} \) |
| 61 | \( 1 - 10.1T + 61T^{2} \) |
| 67 | \( 1 + (-4.29 - 4.29i)T + 67iT^{2} \) |
| 71 | \( 1 - 3.19iT - 71T^{2} \) |
| 73 | \( 1 + (-7.14 + 7.14i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.97iT - 79T^{2} \) |
| 83 | \( 1 + (-3.62 - 3.62i)T + 83iT^{2} \) |
| 89 | \( 1 + 7.98T + 89T^{2} \) |
| 97 | \( 1 + (-9.40 - 9.40i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62063262399240875021292599038, −10.33211832188666828537263361722, −9.504983733754558738719573598690, −8.201751864414330495381204084879, −7.20308758341980175521611799749, −6.70540063319784072508430837271, −5.60524640352090101098994102279, −4.26627134089209604858274498242, −3.60277955450784797593376067841, −0.812951138505086513704700070289,
0.61528929760268119891162084348, 2.61871055434685051003336613880, 3.75391900985423541395985075046, 5.16361424678102267760192431016, 6.38765918920632002460551808969, 6.90129249124186279233130779770, 8.380445371880188960053866610264, 8.842365713011215166601565564343, 9.952467628634500801911774043503, 11.12384346288352627858323963081