L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.58 + 0.705i)3-s − 1.00i·4-s + (−2.23 + 0.0974i)5-s + (0.619 − 1.61i)6-s + (−3.25 − 3.25i)7-s + (0.707 + 0.707i)8-s + (2.00 − 2.23i)9-s + (1.51 − 1.64i)10-s + 3.90i·11-s + (0.705 + 1.58i)12-s + (2.89 − 2.89i)13-s + 4.60·14-s + (3.46 − 1.73i)15-s − 1.00·16-s + (−0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.913 + 0.407i)3-s − 0.500i·4-s + (−0.999 + 0.0435i)5-s + (0.252 − 0.660i)6-s + (−1.23 − 1.23i)7-s + (0.250 + 0.250i)8-s + (0.668 − 0.744i)9-s + (0.477 − 0.521i)10-s + 1.17i·11-s + (0.203 + 0.456i)12-s + (0.802 − 0.802i)13-s + 1.23·14-s + (0.894 − 0.446i)15-s − 0.250·16-s + (−0.171 + 0.171i)17-s + ⋯ |
Λ(s)=(=(510s/2ΓC(s)L(s)(0.526−0.850i)Λ(2−s)
Λ(s)=(=(510s/2ΓC(s+1/2)L(s)(0.526−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
510
= 2⋅3⋅5⋅17
|
Sign: |
0.526−0.850i
|
Analytic conductor: |
4.07237 |
Root analytic conductor: |
2.01801 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ510(137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 510, ( :1/2), 0.526−0.850i)
|
Particular Values
L(1) |
≈ |
0.430624+0.239969i |
L(21) |
≈ |
0.430624+0.239969i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(1.58−0.705i)T |
| 5 | 1+(2.23−0.0974i)T |
| 17 | 1+(0.707−0.707i)T |
good | 7 | 1+(3.25+3.25i)T+7iT2 |
| 11 | 1−3.90iT−11T2 |
| 13 | 1+(−2.89+2.89i)T−13iT2 |
| 19 | 1−5.28iT−19T2 |
| 23 | 1+(−1.08−1.08i)T+23iT2 |
| 29 | 1+1.81T+29T2 |
| 31 | 1−7.47T+31T2 |
| 37 | 1+(3.81+3.81i)T+37iT2 |
| 41 | 1+3.03iT−41T2 |
| 43 | 1+(3.66−3.66i)T−43iT2 |
| 47 | 1+(−3.79+3.79i)T−47iT2 |
| 53 | 1+(−8.80−8.80i)T+53iT2 |
| 59 | 1−8.47T+59T2 |
| 61 | 1−10.1T+61T2 |
| 67 | 1+(−4.29−4.29i)T+67iT2 |
| 71 | 1−3.19iT−71T2 |
| 73 | 1+(−7.14+7.14i)T−73iT2 |
| 79 | 1+3.97iT−79T2 |
| 83 | 1+(−3.62−3.62i)T+83iT2 |
| 89 | 1+7.98T+89T2 |
| 97 | 1+(−9.40−9.40i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62063262399240875021292599038, −10.33211832188666828537263361722, −9.504983733754558738719573598690, −8.201751864414330495381204084879, −7.20308758341980175521611799749, −6.70540063319784072508430837271, −5.60524640352090101098994102279, −4.26627134089209604858274498242, −3.60277955450784797593376067841, −0.812951138505086513704700070289,
0.61528929760268119891162084348, 2.61871055434685051003336613880, 3.75391900985423541395985075046, 5.16361424678102267760192431016, 6.38765918920632002460551808969, 6.90129249124186279233130779770, 8.380445371880188960053866610264, 8.842365713011215166601565564343, 9.952467628634500801911774043503, 11.12384346288352627858323963081