Properties

Label 2-72e2-1.1-c1-0-11
Degree $2$
Conductor $5184$
Sign $1$
Analytic cond. $41.3944$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·11-s − 2·13-s − 3·17-s − 19-s + 6·23-s − 5·25-s − 6·29-s + 4·31-s + 4·37-s + 9·41-s − 43-s + 6·47-s − 3·49-s − 12·53-s + 3·59-s − 8·61-s + 5·67-s + 12·71-s + 11·73-s + 6·77-s + 4·79-s + 12·83-s + 6·89-s + 4·91-s + 5·97-s − 14·103-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.904·11-s − 0.554·13-s − 0.727·17-s − 0.229·19-s + 1.25·23-s − 25-s − 1.11·29-s + 0.718·31-s + 0.657·37-s + 1.40·41-s − 0.152·43-s + 0.875·47-s − 3/7·49-s − 1.64·53-s + 0.390·59-s − 1.02·61-s + 0.610·67-s + 1.42·71-s + 1.28·73-s + 0.683·77-s + 0.450·79-s + 1.31·83-s + 0.635·89-s + 0.419·91-s + 0.507·97-s − 1.37·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5184\)    =    \(2^{6} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(41.3944\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.143371900\)
\(L(\frac12)\) \(\approx\) \(1.143371900\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.004874510471126629875326215800, −7.61550392042635002094679885373, −6.71782060930200301497522083770, −6.13537847248252222252378323029, −5.27398052675085301748339586603, −4.58847837490118018713372112605, −3.66068742781442559176084506010, −2.78620746794391482576765657021, −2.08674986394077854980553765067, −0.55030123589812757559608034041, 0.55030123589812757559608034041, 2.08674986394077854980553765067, 2.78620746794391482576765657021, 3.66068742781442559176084506010, 4.58847837490118018713372112605, 5.27398052675085301748339586603, 6.13537847248252222252378323029, 6.71782060930200301497522083770, 7.61550392042635002094679885373, 8.004874510471126629875326215800

Graph of the $Z$-function along the critical line