L(s) = 1 | + (2.22 + 1.74i)2-s + 3.23i·3-s + (1.93 + 7.76i)4-s + (4.87 + 4.87i)5-s + (−5.62 + 7.20i)6-s + (−22.0 − 22.0i)7-s + (−9.18 + 20.6i)8-s + 16.5·9-s + (2.38 + 19.3i)10-s + (43.5 + 43.5i)11-s + (−25.0 + 6.26i)12-s + (−2.54 − 46.8i)13-s + (−10.7 − 87.6i)14-s + (−15.7 + 15.7i)15-s + (−56.4 + 30.1i)16-s − 39.7i·17-s + ⋯ |
L(s) = 1 | + (0.788 + 0.615i)2-s + 0.621i·3-s + (0.242 + 0.970i)4-s + (0.435 + 0.435i)5-s + (−0.382 + 0.490i)6-s + (−1.19 − 1.19i)7-s + (−0.405 + 0.913i)8-s + 0.613·9-s + (0.0752 + 0.611i)10-s + (1.19 + 1.19i)11-s + (−0.603 + 0.150i)12-s + (−0.0542 − 0.998i)13-s + (−0.205 − 1.67i)14-s + (−0.271 + 0.271i)15-s + (−0.882 + 0.470i)16-s − 0.567i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00517 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.00517 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.44901 + 1.45653i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44901 + 1.45653i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.22 - 1.74i)T \) |
| 13 | \( 1 + (2.54 + 46.8i)T \) |
good | 3 | \( 1 - 3.23iT - 27T^{2} \) |
| 5 | \( 1 + (-4.87 - 4.87i)T + 125iT^{2} \) |
| 7 | \( 1 + (22.0 + 22.0i)T + 343iT^{2} \) |
| 11 | \( 1 + (-43.5 - 43.5i)T + 1.33e3iT^{2} \) |
| 17 | \( 1 + 39.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-81.1 + 81.1i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 99.6T + 1.21e4T^{2} \) |
| 29 | \( 1 - 53.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-1.94 + 1.94i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (182. - 182. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + (33.5 + 33.5i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 + 339.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-74.4 - 74.4i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + 28.7T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-45.2 - 45.2i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + 560.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-332. + 332. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + (152. - 152. i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + (52.7 - 52.7i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 + 544. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-24.2 + 24.2i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + (-37.1 + 37.1i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (-1.15e3 - 1.15e3i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.31627590838554815309997687132, −14.09984363253714910179018865697, −13.25498291324837408347723219787, −12.09341863724920479017498860688, −10.32927105548802630489859556453, −9.546480482066353848628455637735, −7.30262695031169839753786321484, −6.55245156514819001483586094668, −4.64001560116095975289824760432, −3.38394581453390121254749017844,
1.65308697481245385056047127076, 3.62126952943925628733406279699, 5.76794708139868650433248865668, 6.56889560067732688875001858608, 8.975658826702582233248139465226, 9.881187626456736371285000159717, 11.76356594763995985538511060866, 12.35373019222087124206679417665, 13.39211964104906193478178545179, 14.24989952645924177315420170592