L(s) = 1 | + (2.81 + 0.289i)2-s + 7.82i·3-s + (7.83 + 1.62i)4-s + (−8.33 − 8.33i)5-s + (−2.26 + 22.0i)6-s + (11.3 + 11.3i)7-s + (21.5 + 6.84i)8-s − 34.3·9-s + (−21.0 − 25.8i)10-s + (−25.6 − 25.6i)11-s + (−12.7 + 61.3i)12-s + (46.5 − 5.26i)13-s + (28.5 + 35.1i)14-s + (65.2 − 65.2i)15-s + (58.7 + 25.4i)16-s − 78.9i·17-s + ⋯ |
L(s) = 1 | + (0.994 + 0.102i)2-s + 1.50i·3-s + (0.979 + 0.203i)4-s + (−0.745 − 0.745i)5-s + (−0.154 + 1.49i)6-s + (0.611 + 0.611i)7-s + (0.953 + 0.302i)8-s − 1.27·9-s + (−0.665 − 0.817i)10-s + (−0.702 − 0.702i)11-s + (−0.306 + 1.47i)12-s + (0.993 − 0.112i)13-s + (0.545 + 0.670i)14-s + (1.12 − 1.12i)15-s + (0.917 + 0.398i)16-s − 1.12i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.376 - 0.926i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.376 - 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.86686 + 1.25615i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.86686 + 1.25615i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.81 - 0.289i)T \) |
| 13 | \( 1 + (-46.5 + 5.26i)T \) |
good | 3 | \( 1 - 7.82iT - 27T^{2} \) |
| 5 | \( 1 + (8.33 + 8.33i)T + 125iT^{2} \) |
| 7 | \( 1 + (-11.3 - 11.3i)T + 343iT^{2} \) |
| 11 | \( 1 + (25.6 + 25.6i)T + 1.33e3iT^{2} \) |
| 17 | \( 1 + 78.9iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-40.6 + 40.6i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 16.5T + 1.21e4T^{2} \) |
| 29 | \( 1 + 273.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (166. - 166. i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (-88.3 + 88.3i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + (-341. - 341. i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 + 381.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-251. - 251. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + 400.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (449. + 449. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 - 157.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (138. - 138. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + (-236. + 236. i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + (-59.1 + 59.1i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 - 559. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-140. + 140. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + (-137. + 137. i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (-598. - 598. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.38447695720384565755294147509, −14.27794179073508350787998041124, −12.94693149271694460386202671725, −11.49178847920105229404833872393, −10.96463748176286396612878907977, −9.161742271669840738234837632333, −7.932284507086089469816687746548, −5.53870885522283759298087477430, −4.69638201380513655600393529198, −3.35895576359499751242565570999,
1.80310413986529452941682273873, 3.80216458225220400194478722148, 5.93455458478931851247574180806, 7.32407644201237116951755191245, 7.78173392220828896594158953796, 10.70442294873512718317237766368, 11.50187031696891753050080233956, 12.67365722498515995505738504015, 13.44264811335915391926024399722, 14.52086379267175774581881162008