L(s) = 1 | + (−1.28 − 0.584i)2-s + (1.00 − 0.582i)3-s + (1.31 + 1.50i)4-s + 5-s + (−1.63 + 0.160i)6-s + (0.786 + 0.454i)7-s + (−0.814 − 2.70i)8-s + (−0.821 + 1.42i)9-s + (−1.28 − 0.584i)10-s + (2.01 + 3.49i)11-s + (2.20 + 0.752i)12-s + (1.21 + 3.39i)13-s + (−0.747 − 1.04i)14-s + (1.00 − 0.582i)15-s + (−0.534 + 3.96i)16-s + (1.41 − 2.45i)17-s + ⋯ |
L(s) = 1 | + (−0.910 − 0.413i)2-s + (0.582 − 0.336i)3-s + (0.658 + 0.752i)4-s + 0.447·5-s + (−0.669 + 0.0653i)6-s + (0.297 + 0.171i)7-s + (−0.287 − 0.957i)8-s + (−0.273 + 0.474i)9-s + (−0.407 − 0.184i)10-s + (0.608 + 1.05i)11-s + (0.636 + 0.217i)12-s + (0.336 + 0.941i)13-s + (−0.199 − 0.279i)14-s + (0.260 − 0.150i)15-s + (−0.133 + 0.991i)16-s + (0.344 − 0.596i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.995−0.0981i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.995−0.0981i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.995−0.0981i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.995−0.0981i)
|
Particular Values
L(1) |
≈ |
1.28832+0.0634096i |
L(21) |
≈ |
1.28832+0.0634096i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.28+0.584i)T |
| 5 | 1−T |
| 13 | 1+(−1.21−3.39i)T |
good | 3 | 1+(−1.00+0.582i)T+(1.5−2.59i)T2 |
| 7 | 1+(−0.786−0.454i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.01−3.49i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.41+2.45i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.810+1.40i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.494+0.856i)T+(−11.5+19.9i)T2 |
| 29 | 1+(7.87−4.54i)T+(14.5−25.1i)T2 |
| 31 | 1−3.84iT−31T2 |
| 37 | 1+(0.538+0.931i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−7.68+4.43i)T+(20.5−35.5i)T2 |
| 43 | 1+(−9.23−5.33i)T+(21.5+37.2i)T2 |
| 47 | 1+11.5iT−47T2 |
| 53 | 1+10.1iT−53T2 |
| 59 | 1+(−4.67+8.09i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.159−0.0918i)T+(30.5+52.8i)T2 |
| 67 | 1+(−5.74−9.95i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−4.27−2.46i)T+(35.5+61.4i)T2 |
| 73 | 1+5.44iT−73T2 |
| 79 | 1+14.8T+79T2 |
| 83 | 1−14.8T+83T2 |
| 89 | 1+(2.39−1.38i)T+(44.5−77.0i)T2 |
| 97 | 1+(9.80+5.66i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89736484737994082725460456664, −9.736187258768394320499776935261, −9.163798247384157760122386708096, −8.418741942237630982741676771178, −7.34492425798007092348027958920, −6.80006702695614874053175734675, −5.27743834900158006038107525059, −3.81882981946944870138486567506, −2.40870401918101502524462616558, −1.63386182501573039001668036273,
1.07080453804646296672384968134, 2.73414942019696714429865181044, 3.94386493210342530711859813451, 5.84958487006861920083479725292, 6.01055565669897889898866472337, 7.61513557412249130985893025874, 8.226342651561169086295388740634, 9.165276378782644931231078736891, 9.642998337597152318722140954064, 10.74858291997980612318396566449