L(s) = 1 | − 0.773i·3-s + (1.98 − 1.02i)5-s + 1.12·7-s + 2.40·9-s + 2.52i·11-s + (−1.37 − 3.33i)13-s + (−0.789 − 1.53i)15-s − 0.870i·17-s + 6.27i·19-s − 0.870i·21-s − 2.81i·23-s + (2.91 − 4.06i)25-s − 4.17i·27-s − 0.176·29-s − 0.388i·31-s + ⋯ |
L(s) = 1 | − 0.446i·3-s + (0.889 − 0.456i)5-s + 0.425·7-s + 0.800·9-s + 0.760i·11-s + (−0.381 − 0.924i)13-s + (−0.203 − 0.397i)15-s − 0.211i·17-s + 1.43i·19-s − 0.189i·21-s − 0.586i·23-s + (0.583 − 0.812i)25-s − 0.803i·27-s − 0.0328·29-s − 0.0698i·31-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.761+0.647i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.761+0.647i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.761+0.647i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.761+0.647i)
|
Particular Values
L(1) |
≈ |
1.69277−0.622608i |
L(21) |
≈ |
1.69277−0.622608i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.98+1.02i)T |
| 13 | 1+(1.37+3.33i)T |
good | 3 | 1+0.773iT−3T2 |
| 7 | 1−1.12T+7T2 |
| 11 | 1−2.52iT−11T2 |
| 17 | 1+0.870iT−17T2 |
| 19 | 1−6.27iT−19T2 |
| 23 | 1+2.81iT−23T2 |
| 29 | 1+0.176T+29T2 |
| 31 | 1+0.388iT−31T2 |
| 37 | 1−3.12T+37T2 |
| 41 | 1+7.25iT−41T2 |
| 43 | 1+4.52iT−43T2 |
| 47 | 1+1.12T+47T2 |
| 53 | 1−9.83iT−53T2 |
| 59 | 1−12.1iT−59T2 |
| 61 | 1−10.3T+61T2 |
| 67 | 1+6.70T+67T2 |
| 71 | 1+4.37iT−71T2 |
| 73 | 1+4.70T+73T2 |
| 79 | 1+8.31T+79T2 |
| 83 | 1+9.15T+83T2 |
| 89 | 1−6.15iT−89T2 |
| 97 | 1−1.55T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37715043579732770046743051276, −10.11432955624298570368964408280, −9.034724274563823483094871465044, −7.976587831811759546212910733595, −7.23699199403839414579213658976, −6.11020233211826157792150330055, −5.19531851779143253139319062839, −4.17772850600034976520188607975, −2.39996787610079345999889883147, −1.32088740219816192054630510980,
1.65363070470037908090416834079, 3.01282771885362301650031284521, 4.38091122251793873821007132733, 5.26520391729427714890506664225, 6.45668881895852296288889660693, 7.17155456288815571989411243659, 8.441214950151437721211002035718, 9.484137513237650571285687312137, 9.895944431486315547510046979384, 11.09203994583435442109110931748