Properties

Label 2-520-1.1-c5-0-35
Degree $2$
Conductor $520$
Sign $-1$
Analytic cond. $83.3995$
Root an. cond. $9.13233$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.3·3-s − 25·5-s − 38.6·7-s − 135.·9-s + 439.·11-s + 169·13-s + 259.·15-s − 1.80e3·17-s + 1.33e3·19-s + 400.·21-s + 1.49e3·23-s + 625·25-s + 3.92e3·27-s + 245.·29-s − 3.08e3·31-s − 4.56e3·33-s + 965.·35-s + 1.49e4·37-s − 1.75e3·39-s + 4.90e3·41-s + 1.60e4·43-s + 3.37e3·45-s − 2.00e4·47-s − 1.53e4·49-s + 1.87e4·51-s + 2.09e4·53-s − 1.09e4·55-s + ⋯
L(s)  = 1  − 0.666·3-s − 0.447·5-s − 0.297·7-s − 0.556·9-s + 1.09·11-s + 0.277·13-s + 0.297·15-s − 1.51·17-s + 0.846·19-s + 0.198·21-s + 0.588·23-s + 0.200·25-s + 1.03·27-s + 0.0542·29-s − 0.575·31-s − 0.729·33-s + 0.133·35-s + 1.79·37-s − 0.184·39-s + 0.456·41-s + 1.32·43-s + 0.248·45-s − 1.32·47-s − 0.911·49-s + 1.00·51-s + 1.02·53-s − 0.489·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(83.3995\)
Root analytic conductor: \(9.13233\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 520,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 25T \)
13 \( 1 - 169T \)
good3 \( 1 + 10.3T + 243T^{2} \)
7 \( 1 + 38.6T + 1.68e4T^{2} \)
11 \( 1 - 439.T + 1.61e5T^{2} \)
17 \( 1 + 1.80e3T + 1.41e6T^{2} \)
19 \( 1 - 1.33e3T + 2.47e6T^{2} \)
23 \( 1 - 1.49e3T + 6.43e6T^{2} \)
29 \( 1 - 245.T + 2.05e7T^{2} \)
31 \( 1 + 3.08e3T + 2.86e7T^{2} \)
37 \( 1 - 1.49e4T + 6.93e7T^{2} \)
41 \( 1 - 4.90e3T + 1.15e8T^{2} \)
43 \( 1 - 1.60e4T + 1.47e8T^{2} \)
47 \( 1 + 2.00e4T + 2.29e8T^{2} \)
53 \( 1 - 2.09e4T + 4.18e8T^{2} \)
59 \( 1 + 3.63e4T + 7.14e8T^{2} \)
61 \( 1 + 3.20e4T + 8.44e8T^{2} \)
67 \( 1 + 1.50e4T + 1.35e9T^{2} \)
71 \( 1 + 4.96e3T + 1.80e9T^{2} \)
73 \( 1 - 7.35e4T + 2.07e9T^{2} \)
79 \( 1 - 2.09e4T + 3.07e9T^{2} \)
83 \( 1 - 735.T + 3.93e9T^{2} \)
89 \( 1 - 5.97e4T + 5.58e9T^{2} \)
97 \( 1 + 1.43e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.465724581864129417536356386625, −8.924522454764480600895555504960, −7.78522278413986188513062999139, −6.67795169173979127945194879142, −6.09106677768265013841235524208, −4.90034833810533016167584191329, −3.92716075503740590549367304071, −2.74500501128098046719002646602, −1.13163891695996596919303554860, 0, 1.13163891695996596919303554860, 2.74500501128098046719002646602, 3.92716075503740590549367304071, 4.90034833810533016167584191329, 6.09106677768265013841235524208, 6.67795169173979127945194879142, 7.78522278413986188513062999139, 8.924522454764480600895555504960, 9.465724581864129417536356386625

Graph of the $Z$-function along the critical line