Properties

Label 2-5202-1.1-c1-0-110
Degree $2$
Conductor $5202$
Sign $-1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s − 13-s + 14-s + 16-s − 7·19-s − 6·23-s − 5·25-s − 26-s + 28-s − 5·31-s + 32-s − 5·37-s − 7·38-s − 12·41-s + 11·43-s − 6·46-s + 6·47-s − 6·49-s − 5·50-s − 52-s + 12·53-s + 56-s − 6·59-s − 5·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.60·19-s − 1.25·23-s − 25-s − 0.196·26-s + 0.188·28-s − 0.898·31-s + 0.176·32-s − 0.821·37-s − 1.13·38-s − 1.87·41-s + 1.67·43-s − 0.884·46-s + 0.875·47-s − 6/7·49-s − 0.707·50-s − 0.138·52-s + 1.64·53-s + 0.133·56-s − 0.781·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68902014273125732423353665474, −7.15583436085154811806960522515, −6.16702040560434594459761152095, −5.77734637112887029021755678205, −4.79841488210778229056615619830, −4.17648049120606166997723849202, −3.47761270562163795419441173557, −2.30243597616580886301952977644, −1.73492689667730162764863744377, 0, 1.73492689667730162764863744377, 2.30243597616580886301952977644, 3.47761270562163795419441173557, 4.17648049120606166997723849202, 4.79841488210778229056615619830, 5.77734637112887029021755678205, 6.16702040560434594459761152095, 7.15583436085154811806960522515, 7.68902014273125732423353665474

Graph of the $Z$-function along the critical line