Properties

Label 2-522-1.1-c1-0-8
Degree $2$
Conductor $522$
Sign $-1$
Analytic cond. $4.16819$
Root an. cond. $2.04161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s + 3·11-s − 13-s + 2·14-s + 16-s − 8·17-s − 20-s − 3·22-s − 4·23-s − 4·25-s + 26-s − 2·28-s + 29-s − 3·31-s − 32-s + 8·34-s + 2·35-s + 8·37-s + 40-s − 2·41-s − 11·43-s + 3·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s + 0.904·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 1.94·17-s − 0.223·20-s − 0.639·22-s − 0.834·23-s − 4/5·25-s + 0.196·26-s − 0.377·28-s + 0.185·29-s − 0.538·31-s − 0.176·32-s + 1.37·34-s + 0.338·35-s + 1.31·37-s + 0.158·40-s − 0.312·41-s − 1.67·43-s + 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(522\)    =    \(2 \cdot 3^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(4.16819\)
Root analytic conductor: \(2.04161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 522,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
29 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 15 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26866147802001152913025958268, −9.482258294877269881590757644436, −8.763894772751692239273117298832, −7.81012507517906630443430989651, −6.74819217569927040729981669784, −6.19818150900186047644659279635, −4.54621693456857955686454044680, −3.46305229707620473692544260201, −2.01064091456439163113006432735, 0, 2.01064091456439163113006432735, 3.46305229707620473692544260201, 4.54621693456857955686454044680, 6.19818150900186047644659279635, 6.74819217569927040729981669784, 7.81012507517906630443430989651, 8.763894772751692239273117298832, 9.482258294877269881590757644436, 10.26866147802001152913025958268

Graph of the $Z$-function along the critical line