Properties

Label 2-5220-1.1-c1-0-33
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 1.52·7-s + 1.52·11-s + 0.622·13-s − 5.52·17-s + 2.90·19-s + 2.90·23-s + 25-s − 29-s − 2.90·31-s + 1.52·35-s + 2.47·37-s + 8.23·41-s − 5.65·43-s + 4.70·47-s − 4.67·49-s + 11.2·53-s − 1.52·55-s − 10.2·59-s − 7.93·61-s − 0.622·65-s − 2.90·67-s − 7.47·71-s + 2.90·73-s − 2.32·77-s − 16.5·79-s + 6.76·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.576·7-s + 0.459·11-s + 0.172·13-s − 1.34·17-s + 0.666·19-s + 0.605·23-s + 0.200·25-s − 0.185·29-s − 0.521·31-s + 0.257·35-s + 0.406·37-s + 1.28·41-s − 0.862·43-s + 0.686·47-s − 0.667·49-s + 1.55·53-s − 0.205·55-s − 1.33·59-s − 1.01·61-s − 0.0771·65-s − 0.354·67-s − 0.887·71-s + 0.339·73-s − 0.265·77-s − 1.86·79-s + 0.743·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good7 \( 1 + 1.52T + 7T^{2} \)
11 \( 1 - 1.52T + 11T^{2} \)
13 \( 1 - 0.622T + 13T^{2} \)
17 \( 1 + 5.52T + 17T^{2} \)
19 \( 1 - 2.90T + 19T^{2} \)
23 \( 1 - 2.90T + 23T^{2} \)
31 \( 1 + 2.90T + 31T^{2} \)
37 \( 1 - 2.47T + 37T^{2} \)
41 \( 1 - 8.23T + 41T^{2} \)
43 \( 1 + 5.65T + 43T^{2} \)
47 \( 1 - 4.70T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 + 10.2T + 59T^{2} \)
61 \( 1 + 7.93T + 61T^{2} \)
67 \( 1 + 2.90T + 67T^{2} \)
71 \( 1 + 7.47T + 71T^{2} \)
73 \( 1 - 2.90T + 73T^{2} \)
79 \( 1 + 16.5T + 79T^{2} \)
83 \( 1 - 6.76T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 - 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70387707206528897272644486440, −7.16932894359080537194244805663, −6.44598572432251328885130077396, −5.79171039778003899827925724927, −4.78893190492671786118497780606, −4.11366900073951580869716766929, −3.31821985756849302475115656690, −2.48965825817061695800959585562, −1.27447959105195894810472466583, 0, 1.27447959105195894810472466583, 2.48965825817061695800959585562, 3.31821985756849302475115656690, 4.11366900073951580869716766929, 4.78893190492671786118497780606, 5.79171039778003899827925724927, 6.44598572432251328885130077396, 7.16932894359080537194244805663, 7.70387707206528897272644486440

Graph of the $Z$-function along the critical line