Properties

Label 2-5225-1.1-c1-0-270
Degree $2$
Conductor $5225$
Sign $-1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s − 0.154·3-s + 3.53·4-s − 0.363·6-s − 1.56·7-s + 3.60·8-s − 2.97·9-s + 11-s − 0.546·12-s + 0.910·13-s − 3.69·14-s + 1.41·16-s − 2.91·17-s − 7.00·18-s + 19-s + 0.242·21-s + 2.35·22-s − 6.89·23-s − 0.557·24-s + 2.14·26-s + 0.924·27-s − 5.54·28-s + 3.61·29-s − 7.70·31-s − 3.87·32-s − 0.154·33-s − 6.84·34-s + ⋯
L(s)  = 1  + 1.66·2-s − 0.0893·3-s + 1.76·4-s − 0.148·6-s − 0.593·7-s + 1.27·8-s − 0.992·9-s + 0.301·11-s − 0.157·12-s + 0.252·13-s − 0.986·14-s + 0.354·16-s − 0.705·17-s − 1.65·18-s + 0.229·19-s + 0.0529·21-s + 0.501·22-s − 1.43·23-s − 0.113·24-s + 0.419·26-s + 0.177·27-s − 1.04·28-s + 0.670·29-s − 1.38·31-s − 0.685·32-s − 0.0269·33-s − 1.17·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - 2.35T + 2T^{2} \)
3 \( 1 + 0.154T + 3T^{2} \)
7 \( 1 + 1.56T + 7T^{2} \)
13 \( 1 - 0.910T + 13T^{2} \)
17 \( 1 + 2.91T + 17T^{2} \)
23 \( 1 + 6.89T + 23T^{2} \)
29 \( 1 - 3.61T + 29T^{2} \)
31 \( 1 + 7.70T + 31T^{2} \)
37 \( 1 + 3.33T + 37T^{2} \)
41 \( 1 - 5.34T + 41T^{2} \)
43 \( 1 - 0.359T + 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 - 2.31T + 53T^{2} \)
59 \( 1 + 12.2T + 59T^{2} \)
61 \( 1 - 5.35T + 61T^{2} \)
67 \( 1 + 5.61T + 67T^{2} \)
71 \( 1 - 8.92T + 71T^{2} \)
73 \( 1 + 7.09T + 73T^{2} \)
79 \( 1 + 5.34T + 79T^{2} \)
83 \( 1 + 15.6T + 83T^{2} \)
89 \( 1 + 3.19T + 89T^{2} \)
97 \( 1 - 7.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57556922208119499438434633305, −6.76009586668438339261575232397, −6.11759588177841134611367120021, −5.74069657368161392233635532858, −4.88496884675564262370561754717, −4.10168940894912396338775298478, −3.43248316352990429810204176412, −2.73934843800984933159074460092, −1.83494517155303657783869504867, 0, 1.83494517155303657783869504867, 2.73934843800984933159074460092, 3.43248316352990429810204176412, 4.10168940894912396338775298478, 4.88496884675564262370561754717, 5.74069657368161392233635532858, 6.11759588177841134611367120021, 6.76009586668438339261575232397, 7.57556922208119499438434633305

Graph of the $Z$-function along the critical line