L(s) = 1 | + 2.35·2-s − 0.154·3-s + 3.53·4-s − 0.363·6-s − 1.56·7-s + 3.60·8-s − 2.97·9-s + 11-s − 0.546·12-s + 0.910·13-s − 3.69·14-s + 1.41·16-s − 2.91·17-s − 7.00·18-s + 19-s + 0.242·21-s + 2.35·22-s − 6.89·23-s − 0.557·24-s + 2.14·26-s + 0.924·27-s − 5.54·28-s + 3.61·29-s − 7.70·31-s − 3.87·32-s − 0.154·33-s − 6.84·34-s + ⋯ |
L(s) = 1 | + 1.66·2-s − 0.0893·3-s + 1.76·4-s − 0.148·6-s − 0.593·7-s + 1.27·8-s − 0.992·9-s + 0.301·11-s − 0.157·12-s + 0.252·13-s − 0.986·14-s + 0.354·16-s − 0.705·17-s − 1.65·18-s + 0.229·19-s + 0.0529·21-s + 0.501·22-s − 1.43·23-s − 0.113·24-s + 0.419·26-s + 0.177·27-s − 1.04·28-s + 0.670·29-s − 1.38·31-s − 0.685·32-s − 0.0269·33-s − 1.17·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - 2.35T + 2T^{2} \) |
| 3 | \( 1 + 0.154T + 3T^{2} \) |
| 7 | \( 1 + 1.56T + 7T^{2} \) |
| 13 | \( 1 - 0.910T + 13T^{2} \) |
| 17 | \( 1 + 2.91T + 17T^{2} \) |
| 23 | \( 1 + 6.89T + 23T^{2} \) |
| 29 | \( 1 - 3.61T + 29T^{2} \) |
| 31 | \( 1 + 7.70T + 31T^{2} \) |
| 37 | \( 1 + 3.33T + 37T^{2} \) |
| 41 | \( 1 - 5.34T + 41T^{2} \) |
| 43 | \( 1 - 0.359T + 43T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 - 2.31T + 53T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 - 5.35T + 61T^{2} \) |
| 67 | \( 1 + 5.61T + 67T^{2} \) |
| 71 | \( 1 - 8.92T + 71T^{2} \) |
| 73 | \( 1 + 7.09T + 73T^{2} \) |
| 79 | \( 1 + 5.34T + 79T^{2} \) |
| 83 | \( 1 + 15.6T + 83T^{2} \) |
| 89 | \( 1 + 3.19T + 89T^{2} \) |
| 97 | \( 1 - 7.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.57556922208119499438434633305, −6.76009586668438339261575232397, −6.11759588177841134611367120021, −5.74069657368161392233635532858, −4.88496884675564262370561754717, −4.10168940894912396338775298478, −3.43248316352990429810204176412, −2.73934843800984933159074460092, −1.83494517155303657783869504867, 0,
1.83494517155303657783869504867, 2.73934843800984933159074460092, 3.43248316352990429810204176412, 4.10168940894912396338775298478, 4.88496884675564262370561754717, 5.74069657368161392233635532858, 6.11759588177841134611367120021, 6.76009586668438339261575232397, 7.57556922208119499438434633305