Properties

Label 2-5239-1.1-c1-0-180
Degree $2$
Conductor $5239$
Sign $-1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.54·2-s − 2.14·3-s + 4.48·4-s − 1.97·5-s + 5.46·6-s + 3.56·7-s − 6.32·8-s + 1.60·9-s + 5.02·10-s − 1.79·11-s − 9.62·12-s − 9.07·14-s + 4.23·15-s + 7.14·16-s − 2.37·17-s − 4.09·18-s + 6.43·19-s − 8.85·20-s − 7.65·21-s + 4.57·22-s + 3.16·23-s + 13.5·24-s − 1.10·25-s + 2.98·27-s + 15.9·28-s − 8.54·29-s − 10.7·30-s + ⋯
L(s)  = 1  − 1.80·2-s − 1.23·3-s + 2.24·4-s − 0.882·5-s + 2.23·6-s + 1.34·7-s − 2.23·8-s + 0.536·9-s + 1.58·10-s − 0.542·11-s − 2.77·12-s − 2.42·14-s + 1.09·15-s + 1.78·16-s − 0.575·17-s − 0.965·18-s + 1.47·19-s − 1.97·20-s − 1.66·21-s + 0.976·22-s + 0.660·23-s + 2.77·24-s − 0.220·25-s + 0.575·27-s + 3.02·28-s − 1.58·29-s − 1.96·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + 2.54T + 2T^{2} \)
3 \( 1 + 2.14T + 3T^{2} \)
5 \( 1 + 1.97T + 5T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 1.79T + 11T^{2} \)
17 \( 1 + 2.37T + 17T^{2} \)
19 \( 1 - 6.43T + 19T^{2} \)
23 \( 1 - 3.16T + 23T^{2} \)
29 \( 1 + 8.54T + 29T^{2} \)
37 \( 1 - 7.43T + 37T^{2} \)
41 \( 1 - 6.15T + 41T^{2} \)
43 \( 1 + 9.24T + 43T^{2} \)
47 \( 1 + 5.38T + 47T^{2} \)
53 \( 1 - 4.02T + 53T^{2} \)
59 \( 1 + 3.90T + 59T^{2} \)
61 \( 1 - 9.88T + 61T^{2} \)
67 \( 1 + 11.7T + 67T^{2} \)
71 \( 1 - 3.78T + 71T^{2} \)
73 \( 1 - 5.31T + 73T^{2} \)
79 \( 1 + 3.77T + 79T^{2} \)
83 \( 1 - 5.34T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 4.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.893097957261660770293832030412, −7.38605763825856929696099390018, −6.77480557717948529243209961334, −5.72632130251237986612187772145, −5.17564457294781603025054761523, −4.26723229334160440591467328044, −2.96645250210339223269202974546, −1.81735917710635432458222752474, −0.934930911748851799840340164001, 0, 0.934930911748851799840340164001, 1.81735917710635432458222752474, 2.96645250210339223269202974546, 4.26723229334160440591467328044, 5.17564457294781603025054761523, 5.72632130251237986612187772145, 6.77480557717948529243209961334, 7.38605763825856929696099390018, 7.893097957261660770293832030412

Graph of the $Z$-function along the critical line