Properties

Label 2-5239-1.1-c1-0-304
Degree $2$
Conductor $5239$
Sign $-1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.09·2-s − 1.55·3-s − 0.804·4-s + 0.717·5-s − 1.69·6-s + 5.03·7-s − 3.06·8-s − 0.587·9-s + 0.784·10-s + 5.82·11-s + 1.25·12-s + 5.50·14-s − 1.11·15-s − 1.74·16-s − 1.01·17-s − 0.642·18-s − 7.37·19-s − 0.577·20-s − 7.81·21-s + 6.37·22-s − 7.58·23-s + 4.76·24-s − 4.48·25-s + 5.57·27-s − 4.05·28-s − 5.08·29-s − 1.21·30-s + ⋯
L(s)  = 1  + 0.773·2-s − 0.896·3-s − 0.402·4-s + 0.320·5-s − 0.693·6-s + 1.90·7-s − 1.08·8-s − 0.195·9-s + 0.248·10-s + 1.75·11-s + 0.360·12-s + 1.47·14-s − 0.287·15-s − 0.435·16-s − 0.246·17-s − 0.151·18-s − 1.69·19-s − 0.129·20-s − 1.70·21-s + 1.35·22-s − 1.58·23-s + 0.972·24-s − 0.896·25-s + 1.07·27-s − 0.765·28-s − 0.944·29-s − 0.222·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 + T \)
good2 \( 1 - 1.09T + 2T^{2} \)
3 \( 1 + 1.55T + 3T^{2} \)
5 \( 1 - 0.717T + 5T^{2} \)
7 \( 1 - 5.03T + 7T^{2} \)
11 \( 1 - 5.82T + 11T^{2} \)
17 \( 1 + 1.01T + 17T^{2} \)
19 \( 1 + 7.37T + 19T^{2} \)
23 \( 1 + 7.58T + 23T^{2} \)
29 \( 1 + 5.08T + 29T^{2} \)
37 \( 1 + 3.23T + 37T^{2} \)
41 \( 1 - 1.25T + 41T^{2} \)
43 \( 1 - 3.95T + 43T^{2} \)
47 \( 1 + 9.68T + 47T^{2} \)
53 \( 1 + 7.60T + 53T^{2} \)
59 \( 1 - 4.76T + 59T^{2} \)
61 \( 1 - 6.02T + 61T^{2} \)
67 \( 1 + 6.83T + 67T^{2} \)
71 \( 1 + 3.60T + 71T^{2} \)
73 \( 1 - 4.60T + 73T^{2} \)
79 \( 1 - 0.810T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 + 0.574T + 89T^{2} \)
97 \( 1 - 4.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983923393548552662793916219258, −6.78861877837902801935922918119, −6.07448644548355755866613319938, −5.69306885460426841681123078717, −4.85589114996088724098243044443, −4.25329705560820672979439255661, −3.80617311652461034061870175298, −2.19470872588037543490250474313, −1.47198651089890403850641208198, 0, 1.47198651089890403850641208198, 2.19470872588037543490250474313, 3.80617311652461034061870175298, 4.25329705560820672979439255661, 4.85589114996088724098243044443, 5.69306885460426841681123078717, 6.07448644548355755866613319938, 6.78861877837902801935922918119, 7.983923393548552662793916219258

Graph of the $Z$-function along the critical line