Properties

Label 2-5239-1.1-c1-0-382
Degree $2$
Conductor $5239$
Sign $-1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.99·2-s + 2.01·3-s + 1.96·4-s + 0.195·5-s + 4.01·6-s − 1.27·7-s − 0.0674·8-s + 1.05·9-s + 0.388·10-s − 5.49·11-s + 3.95·12-s − 2.53·14-s + 0.392·15-s − 4.06·16-s − 5.47·17-s + 2.10·18-s + 2.83·19-s + 0.383·20-s − 2.55·21-s − 10.9·22-s − 5.48·23-s − 0.135·24-s − 4.96·25-s − 3.91·27-s − 2.49·28-s + 9.37·29-s + 0.782·30-s + ⋯
L(s)  = 1  + 1.40·2-s + 1.16·3-s + 0.983·4-s + 0.0872·5-s + 1.63·6-s − 0.480·7-s − 0.0238·8-s + 0.351·9-s + 0.122·10-s − 1.65·11-s + 1.14·12-s − 0.676·14-s + 0.101·15-s − 1.01·16-s − 1.32·17-s + 0.495·18-s + 0.650·19-s + 0.0857·20-s − 0.558·21-s − 2.33·22-s − 1.14·23-s − 0.0277·24-s − 0.992·25-s − 0.753·27-s − 0.472·28-s + 1.74·29-s + 0.142·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 + T \)
good2 \( 1 - 1.99T + 2T^{2} \)
3 \( 1 - 2.01T + 3T^{2} \)
5 \( 1 - 0.195T + 5T^{2} \)
7 \( 1 + 1.27T + 7T^{2} \)
11 \( 1 + 5.49T + 11T^{2} \)
17 \( 1 + 5.47T + 17T^{2} \)
19 \( 1 - 2.83T + 19T^{2} \)
23 \( 1 + 5.48T + 23T^{2} \)
29 \( 1 - 9.37T + 29T^{2} \)
37 \( 1 - 4.25T + 37T^{2} \)
41 \( 1 - 7.13T + 41T^{2} \)
43 \( 1 - 3.89T + 43T^{2} \)
47 \( 1 + 1.85T + 47T^{2} \)
53 \( 1 + 9.40T + 53T^{2} \)
59 \( 1 - 2.77T + 59T^{2} \)
61 \( 1 + 6.42T + 61T^{2} \)
67 \( 1 + 9.63T + 67T^{2} \)
71 \( 1 - 15.5T + 71T^{2} \)
73 \( 1 - 15.1T + 73T^{2} \)
79 \( 1 + 15.9T + 79T^{2} \)
83 \( 1 - 5.07T + 83T^{2} \)
89 \( 1 + 4.65T + 89T^{2} \)
97 \( 1 + 9.50T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.009251568334485160879071212567, −7.02332662473012290591008600230, −6.17764784022006963857126465530, −5.62661191435894376591820061590, −4.71153623609664183899656979351, −4.12449688577298115176414122612, −3.20746264605630087703283721883, −2.67155854165795566436855228292, −2.12544985960694890430382202346, 0, 2.12544985960694890430382202346, 2.67155854165795566436855228292, 3.20746264605630087703283721883, 4.12449688577298115176414122612, 4.71153623609664183899656979351, 5.62661191435894376591820061590, 6.17764784022006963857126465530, 7.02332662473012290591008600230, 8.009251568334485160879071212567

Graph of the $Z$-function along the critical line