L(s) = 1 | − 0.792i·2-s + (1.18 − 1.26i)3-s + 1.37·4-s + (−1 − 0.939i)6-s + (2 − 1.73i)7-s − 2.67i·8-s + (−0.186 − 2.99i)9-s + 2.52i·11-s + (1.62 − 1.73i)12-s + 4.10i·13-s + (−1.37 − 1.58i)14-s + 0.627·16-s − 4.37·17-s + (−2.37 + 0.147i)18-s − 3.46i·19-s + ⋯ |
L(s) = 1 | − 0.560i·2-s + (0.684 − 0.728i)3-s + 0.686·4-s + (−0.408 − 0.383i)6-s + (0.755 − 0.654i)7-s − 0.944i·8-s + (−0.0620 − 0.998i)9-s + 0.761i·11-s + (0.469 − 0.499i)12-s + 1.13i·13-s + (−0.366 − 0.423i)14-s + 0.156·16-s − 1.06·17-s + (−0.559 + 0.0347i)18-s − 0.794i·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.0406+0.999i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(−0.0406+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.0406+0.999i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), −0.0406+0.999i)
|
Particular Values
L(1) |
≈ |
1.54774−1.61194i |
L(21) |
≈ |
1.54774−1.61194i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.18+1.26i)T |
| 5 | 1 |
| 7 | 1+(−2+1.73i)T |
good | 2 | 1+0.792iT−2T2 |
| 11 | 1−2.52iT−11T2 |
| 13 | 1−4.10iT−13T2 |
| 17 | 1+4.37T+17T2 |
| 19 | 1+3.46iT−19T2 |
| 23 | 1−8.51iT−23T2 |
| 29 | 1+0.939iT−29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1−6.74T+37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+4.74T+43T2 |
| 47 | 1−1.62T+47T2 |
| 53 | 1+1.87iT−53T2 |
| 59 | 1+8.74T+59T2 |
| 61 | 1−6.92iT−61T2 |
| 67 | 1+4.74T+67T2 |
| 71 | 1+0.294iT−71T2 |
| 73 | 1+6.92iT−73T2 |
| 79 | 1+2.37T+79T2 |
| 83 | 1−17.4T+83T2 |
| 89 | 1−14.7T+89T2 |
| 97 | 1−11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84410133330009901527984626773, −9.713086676263963082757410747299, −8.967002855571990760509489487900, −7.71404109989980366446907831645, −7.12089671327371578529796418527, −6.41934550863339423358096064731, −4.66036025455502599878801756939, −3.58518614421039986683783069661, −2.23246566136237335555898934150, −1.45756697331492100396381759157,
2.15558278360804170552666146541, 3.08884870290844587796562812934, 4.57903511795801412383980605138, 5.54141190815059891047079417856, 6.41433273282958980863982395942, 7.86285366798600350287657257982, 8.243978421817344486471213112731, 9.028939748744814991564033167835, 10.38610923828762090657650993622, 10.89048467268808551671247289692