L(s) = 1 | + (1.31 − 0.757i)2-s + (1.20 + 1.24i)3-s + (0.147 − 0.254i)4-s + (2.52 + 0.722i)6-s + (2.64 − 0.0753i)7-s + 2.58i·8-s + (−0.102 + 2.99i)9-s + (−1.86 − 1.07i)11-s + (0.494 − 0.123i)12-s − 3.48i·13-s + (3.41 − 2.10i)14-s + (2.25 + 3.89i)16-s + (−1.78 + 3.09i)17-s + (2.13 + 4.01i)18-s + (1.05 − 0.611i)19-s + ⋯ |
L(s) = 1 | + (0.927 − 0.535i)2-s + (0.694 + 0.719i)3-s + (0.0735 − 0.127i)4-s + (1.02 + 0.294i)6-s + (0.999 − 0.0284i)7-s + 0.913i·8-s + (−0.0341 + 0.999i)9-s + (−0.560 − 0.323i)11-s + (0.142 − 0.0356i)12-s − 0.965i·13-s + (0.911 − 0.561i)14-s + (0.562 + 0.974i)16-s + (−0.433 + 0.751i)17-s + (0.503 + 0.945i)18-s + (0.242 − 0.140i)19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.921−0.389i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(0.921−0.389i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.921−0.389i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), 0.921−0.389i)
|
Particular Values
L(1) |
≈ |
2.81896+0.571338i |
L(21) |
≈ |
2.81896+0.571338i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.20−1.24i)T |
| 5 | 1 |
| 7 | 1+(−2.64+0.0753i)T |
good | 2 | 1+(−1.31+0.757i)T+(1−1.73i)T2 |
| 11 | 1+(1.86+1.07i)T+(5.5+9.52i)T2 |
| 13 | 1+3.48iT−13T2 |
| 17 | 1+(1.78−3.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.05+0.611i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.31+0.757i)T+(11.5−19.9i)T2 |
| 29 | 1+5.95iT−29T2 |
| 31 | 1+(−2.75−1.58i)T+(15.5+26.8i)T2 |
| 37 | 1+(3.90+6.75i)T+(−18.5+32.0i)T2 |
| 41 | 1−11.8T+41T2 |
| 43 | 1+2.99T+43T2 |
| 47 | 1+(3.05+5.28i)T+(−23.5+40.7i)T2 |
| 53 | 1+(9.72+5.61i)T+(26.5+45.8i)T2 |
| 59 | 1+(1.08−1.87i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.94−1.69i)T+(30.5−52.8i)T2 |
| 67 | 1+(5.15−8.93i)T+(−33.5−58.0i)T2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1+(5.93+3.42i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.941+1.63i)T+(−39.5+68.4i)T2 |
| 83 | 1−9.10T+83T2 |
| 89 | 1+(−0.889−1.54i)T+(−44.5+77.0i)T2 |
| 97 | 1+1.32iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86909125769726302037545564917, −10.42437279012310568484482156788, −9.062864532825734304508758770745, −8.201827313338823584535148191507, −7.72218954915785109089778384542, −5.77681478143583512440645399426, −4.95492420373905769824753244804, −4.16398267910670588571127194611, −3.13263245501839972410192611689, −2.14183592349895187898328334001,
1.47588335537145925488392212122, 2.91986094142310150706376437049, 4.31616307440206527206578042684, 5.05869022057840307216368470434, 6.26123420156294303254349798793, 7.12721414761851103780587661093, 7.81808284037691378440674014765, 8.931767351256546618637732903467, 9.694629705661101963755920510348, 11.01078394434062291840014956827