L(s) = 1 | + (2.17 − 1.25i)2-s + (1.73 − 0.0401i)3-s + (2.14 − 3.71i)4-s + (3.71 − 2.25i)6-s + (−2.06 + 1.65i)7-s − 5.74i·8-s + (2.99 − 0.138i)9-s + (−1.48 − 0.859i)11-s + (3.56 − 6.51i)12-s + 0.360i·13-s + (−2.39 + 6.18i)14-s + (−2.91 − 5.04i)16-s + (−1.27 + 2.20i)17-s + (6.33 − 4.05i)18-s + (−4.93 + 2.84i)19-s + ⋯ |
L(s) = 1 | + (1.53 − 0.886i)2-s + (0.999 − 0.0231i)3-s + (1.07 − 1.85i)4-s + (1.51 − 0.922i)6-s + (−0.778 + 0.627i)7-s − 2.03i·8-s + (0.998 − 0.0463i)9-s + (−0.448 − 0.259i)11-s + (1.02 − 1.88i)12-s + 0.100i·13-s + (−0.639 + 1.65i)14-s + (−0.727 − 1.26i)16-s + (−0.308 + 0.534i)17-s + (1.49 − 0.956i)18-s + (−1.13 + 0.653i)19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.299+0.953i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(0.299+0.953i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.299+0.953i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), 0.299+0.953i)
|
Particular Values
L(1) |
≈ |
3.27675−2.40492i |
L(21) |
≈ |
3.27675−2.40492i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.73+0.0401i)T |
| 5 | 1 |
| 7 | 1+(2.06−1.65i)T |
good | 2 | 1+(−2.17+1.25i)T+(1−1.73i)T2 |
| 11 | 1+(1.48+0.859i)T+(5.5+9.52i)T2 |
| 13 | 1−0.360iT−13T2 |
| 17 | 1+(1.27−2.20i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.93−2.84i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.17+1.25i)T+(11.5−19.9i)T2 |
| 29 | 1+3.76iT−29T2 |
| 31 | 1+(2.41+1.39i)T+(15.5+26.8i)T2 |
| 37 | 1+(−1.65−2.86i)T+(−18.5+32.0i)T2 |
| 41 | 1−2.63T+41T2 |
| 43 | 1+10.0T+43T2 |
| 47 | 1+(−2.91−5.04i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.25−0.727i)T+(26.5+45.8i)T2 |
| 59 | 1+(3.42−5.93i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.38+0.801i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.24+2.15i)T+(−33.5−58.0i)T2 |
| 71 | 1+13.1iT−71T2 |
| 73 | 1+(−10.0−5.82i)T+(36.5+63.2i)T2 |
| 79 | 1+(6.93+12.0i)T+(−39.5+68.4i)T2 |
| 83 | 1−3.50T+83T2 |
| 89 | 1+(6.10+10.5i)T+(−44.5+77.0i)T2 |
| 97 | 1−8.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73980165761843680123791512421, −10.08102621819846121391926308910, −9.074678255009932010821176088701, −8.079006231100045215289956685397, −6.63117014323239046183780987605, −5.89331200067215382736564761518, −4.63204796451176986532227374238, −3.70999783835612700419209549471, −2.82457394652934914484305455289, −1.94057654447273535633215103819,
2.51458170973122781930858160858, 3.46820300929947064145412225328, 4.32609371000911298151044420812, 5.26996317848594373515497977912, 6.69954678419089114741643049721, 7.04490837477303716312941999736, 8.024531091893439168422227140763, 9.047700381337351500507089299426, 10.12901866831140731581980728578, 11.19180758275850718937399546751