L(s) = 1 | + (2.17 − 1.25i)2-s + (1.73 − 0.0401i)3-s + (2.14 − 3.71i)4-s + (3.71 − 2.25i)6-s + (−2.06 + 1.65i)7-s − 5.74i·8-s + (2.99 − 0.138i)9-s + (−1.48 − 0.859i)11-s + (3.56 − 6.51i)12-s + 0.360i·13-s + (−2.39 + 6.18i)14-s + (−2.91 − 5.04i)16-s + (−1.27 + 2.20i)17-s + (6.33 − 4.05i)18-s + (−4.93 + 2.84i)19-s + ⋯ |
L(s) = 1 | + (1.53 − 0.886i)2-s + (0.999 − 0.0231i)3-s + (1.07 − 1.85i)4-s + (1.51 − 0.922i)6-s + (−0.778 + 0.627i)7-s − 2.03i·8-s + (0.998 − 0.0463i)9-s + (−0.448 − 0.259i)11-s + (1.02 − 1.88i)12-s + 0.100i·13-s + (−0.639 + 1.65i)14-s + (−0.727 − 1.26i)16-s + (−0.308 + 0.534i)17-s + (1.49 − 0.956i)18-s + (−1.13 + 0.653i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 + 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.299 + 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.27675 - 2.40492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.27675 - 2.40492i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.73 + 0.0401i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.06 - 1.65i)T \) |
good | 2 | \( 1 + (-2.17 + 1.25i)T + (1 - 1.73i)T^{2} \) |
| 11 | \( 1 + (1.48 + 0.859i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.360iT - 13T^{2} \) |
| 17 | \( 1 + (1.27 - 2.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.93 - 2.84i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.17 + 1.25i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.76iT - 29T^{2} \) |
| 31 | \( 1 + (2.41 + 1.39i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.65 - 2.86i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.63T + 41T^{2} \) |
| 43 | \( 1 + 10.0T + 43T^{2} \) |
| 47 | \( 1 + (-2.91 - 5.04i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.25 - 0.727i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.42 - 5.93i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.38 + 0.801i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.24 + 2.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 13.1iT - 71T^{2} \) |
| 73 | \( 1 + (-10.0 - 5.82i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.93 + 12.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.50T + 83T^{2} \) |
| 89 | \( 1 + (6.10 + 10.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73980165761843680123791512421, −10.08102621819846121391926308910, −9.074678255009932010821176088701, −8.079006231100045215289956685397, −6.63117014323239046183780987605, −5.89331200067215382736564761518, −4.63204796451176986532227374238, −3.70999783835612700419209549471, −2.82457394652934914484305455289, −1.94057654447273535633215103819,
2.51458170973122781930858160858, 3.46820300929947064145412225328, 4.32609371000911298151044420812, 5.26996317848594373515497977912, 6.69954678419089114741643049721, 7.04490837477303716312941999736, 8.024531091893439168422227140763, 9.047700381337351500507089299426, 10.12901866831140731581980728578, 11.19180758275850718937399546751