L(s) = 1 | + (−2.17 + 1.25i)2-s + (0.831 + 1.51i)3-s + (2.14 − 3.71i)4-s + (−3.71 − 2.25i)6-s + (−2.06 + 1.65i)7-s + 5.74i·8-s + (−1.61 + 2.52i)9-s + (1.48 + 0.859i)11-s + (7.42 + 0.172i)12-s + 0.360i·13-s + (2.39 − 6.18i)14-s + (−2.91 − 5.04i)16-s + (1.27 − 2.20i)17-s + (0.348 − 7.51i)18-s + (−4.93 + 2.84i)19-s + ⋯ |
L(s) = 1 | + (−1.53 + 0.886i)2-s + (0.479 + 0.877i)3-s + (1.07 − 1.85i)4-s + (−1.51 − 0.922i)6-s + (−0.778 + 0.627i)7-s + 2.03i·8-s + (−0.539 + 0.841i)9-s + (0.448 + 0.259i)11-s + (2.14 + 0.0496i)12-s + 0.100i·13-s + (0.639 − 1.65i)14-s + (−0.727 − 1.26i)16-s + (0.308 − 0.534i)17-s + (0.0821 − 1.77i)18-s + (−1.13 + 0.653i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.709 + 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.709 + 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.149482 - 0.362731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.149482 - 0.362731i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.831 - 1.51i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.06 - 1.65i)T \) |
good | 2 | \( 1 + (2.17 - 1.25i)T + (1 - 1.73i)T^{2} \) |
| 11 | \( 1 + (-1.48 - 0.859i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.360iT - 13T^{2} \) |
| 17 | \( 1 + (-1.27 + 2.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.93 - 2.84i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.17 - 1.25i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3.76iT - 29T^{2} \) |
| 31 | \( 1 + (2.41 + 1.39i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.65 - 2.86i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.63T + 41T^{2} \) |
| 43 | \( 1 + 10.0T + 43T^{2} \) |
| 47 | \( 1 + (2.91 + 5.04i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.25 + 0.727i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.42 + 5.93i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.38 + 0.801i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.24 + 2.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.1iT - 71T^{2} \) |
| 73 | \( 1 + (-10.0 - 5.82i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.93 + 12.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 3.50T + 83T^{2} \) |
| 89 | \( 1 + (-6.10 - 10.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91684611671975863889333835649, −9.903692129758574426799835337445, −9.689173780869109927768161364215, −8.700353131873657000299216638948, −8.228891087483109902684892785998, −7.03636498674596702547383008283, −6.18136759013505849516424745429, −5.16848443371277691455970274891, −3.59184245103756387440802102177, −2.04886262377741627775584574434,
0.34442757927463772822488492569, 1.70527610884559296071080332416, 2.88758398862210930892233945866, 3.87484689739083384531414831908, 6.24808850351760258564436300809, 6.98108041514053396086455572724, 7.918348588567664368073021410354, 8.614166751717529524855046906725, 9.394602177539479459009695063279, 10.19211256144920385197620699211