L(s) = 1 | + (−2.17 + 1.25i)2-s + (0.831 + 1.51i)3-s + (2.14 − 3.71i)4-s + (−3.71 − 2.25i)6-s + (−2.06 + 1.65i)7-s + 5.74i·8-s + (−1.61 + 2.52i)9-s + (1.48 + 0.859i)11-s + (7.42 + 0.172i)12-s + 0.360i·13-s + (2.39 − 6.18i)14-s + (−2.91 − 5.04i)16-s + (1.27 − 2.20i)17-s + (0.348 − 7.51i)18-s + (−4.93 + 2.84i)19-s + ⋯ |
L(s) = 1 | + (−1.53 + 0.886i)2-s + (0.479 + 0.877i)3-s + (1.07 − 1.85i)4-s + (−1.51 − 0.922i)6-s + (−0.778 + 0.627i)7-s + 2.03i·8-s + (−0.539 + 0.841i)9-s + (0.448 + 0.259i)11-s + (2.14 + 0.0496i)12-s + 0.100i·13-s + (0.639 − 1.65i)14-s + (−0.727 − 1.26i)16-s + (0.308 − 0.534i)17-s + (0.0821 − 1.77i)18-s + (−1.13 + 0.653i)19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.709+0.704i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(−0.709+0.704i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.709+0.704i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), −0.709+0.704i)
|
Particular Values
L(1) |
≈ |
0.149482−0.362731i |
L(21) |
≈ |
0.149482−0.362731i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.831−1.51i)T |
| 5 | 1 |
| 7 | 1+(2.06−1.65i)T |
good | 2 | 1+(2.17−1.25i)T+(1−1.73i)T2 |
| 11 | 1+(−1.48−0.859i)T+(5.5+9.52i)T2 |
| 13 | 1−0.360iT−13T2 |
| 17 | 1+(−1.27+2.20i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.93−2.84i)T+(9.5−16.4i)T2 |
| 23 | 1+(2.17−1.25i)T+(11.5−19.9i)T2 |
| 29 | 1−3.76iT−29T2 |
| 31 | 1+(2.41+1.39i)T+(15.5+26.8i)T2 |
| 37 | 1+(−1.65−2.86i)T+(−18.5+32.0i)T2 |
| 41 | 1+2.63T+41T2 |
| 43 | 1+10.0T+43T2 |
| 47 | 1+(2.91+5.04i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.25+0.727i)T+(26.5+45.8i)T2 |
| 59 | 1+(−3.42+5.93i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.38+0.801i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.24+2.15i)T+(−33.5−58.0i)T2 |
| 71 | 1−13.1iT−71T2 |
| 73 | 1+(−10.0−5.82i)T+(36.5+63.2i)T2 |
| 79 | 1+(6.93+12.0i)T+(−39.5+68.4i)T2 |
| 83 | 1+3.50T+83T2 |
| 89 | 1+(−6.10−10.5i)T+(−44.5+77.0i)T2 |
| 97 | 1−8.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91684611671975863889333835649, −9.903692129758574426799835337445, −9.689173780869109927768161364215, −8.700353131873657000299216638948, −8.228891087483109902684892785998, −7.03636498674596702547383008283, −6.18136759013505849516424745429, −5.16848443371277691455970274891, −3.59184245103756387440802102177, −2.04886262377741627775584574434,
0.34442757927463772822488492569, 1.70527610884559296071080332416, 2.88758398862210930892233945866, 3.87484689739083384531414831908, 6.24808850351760258564436300809, 6.98108041514053396086455572724, 7.918348588567664368073021410354, 8.614166751717529524855046906725, 9.394602177539479459009695063279, 10.19211256144920385197620699211